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Summary. 
Key questions asked. Are different physics concepts distinctly represented in the IPE regions 
of the brain? Can a decoder be designed using these representations to mimic the output of a 
computational physics engine? 
 
Experiment 1 (preliminary investigation). Are different physics concepts like stability, motion 
of objects, etc. represented uniquely in the IPE? 
Methods used. RSA 
 
Experiment 2 (follow up of Exp 1). Can IPE representations of motion and stability of objects 
in ‘what next’ scenes be decoded to predict what actually happens next? 
Methods used. Voxel information decoder, deep learning 
 
 
Introduction. 
Fischer et al. [1] identified regions of the brain termed the Intuitive Physics Engine (IPE). These 
regions are sensitive to physical information present in a scene, and are likely involved in scene 
understanding and performing physics inference. In other work, through different 
psychophysical tasks, Battaglia et al. [2] further showed that an IPE can be modeled as 
computational physics engines used in computer graphics programs.  
 
A generic physics engine, such as the one demonstrated in [2],1 typically comprises a simulator 
for rigid body dynamics, which plays out the effect of a wide variety of forces like gravity, friction, 
viscosity, etc. on an object in different weight and motion settings. In practice though, 
applications utilizing physics engines tend to be narrowly defined. A physics engine for a golf 
game would be parameterized differently than a physics engine for a game of pong or a game 
of computerized Jenga.2 A ‘golf engine’ will have air drag and cross-wind as important input 
parameters besides the initial conditions of the ball, while a “pong engine” would focus on the 
physics of elastic collisions more than forces of friction and drag; a “Jenga engine” would focus 
on the centers of masses of the stacked objects.3 This modular approach to defining variants of 
physics engines, each focusing on a narrow set of rules of Newtonian physics, suggests that 
they are largely non-overlapping, functionally distinct ways of characterizing the physical world 
around us. 
 
If it is indeed convenient and efficient to process such “task types” differently in computational 
physics engines, does the IPE in our brains do so as well? Are there different sub-regions within 
the identified IPE which are responsible for different tasks like inferring motion and inferring 
centers of mass? Do the IPE regions represent each of these task types differently, implying the 
existence of a neural mechanism which handles such information differently? 
 
Experiment 1. We first investigate whether the regions identified as IPE in [1] represent tasks 
governed by different aspects of physics uniquely. The first experiment uses RSA 
                                                           
1 https://chandlerprall.github.io/Physijs/examples/jenga.html 
2 Open Dynamics Engine, http://ode.org/ 
3 See informal discussion here - https://gamedev.stackexchange.com/questions/129686/what-
exactly-is-a-physics-engine 
 



(Representation Similarity Analysis) to determine if the activations detected by fMRI in the IPE 
on stimuli presenting different physics tasks are similar to hand-labeled tags provided to the 
stimuli. 
 
We investigate two physical properties in this experiment – stability and motion. 

o Stability refers to whether the net forces on an object is zero, which consequently 
determines if the object shall remain stationary. The outcome of interest in this condition 
is whether an object would remain at rest and not end up crashing or tumbling. We note 
here that the underlying physics which results in an object remaining at rest may vary 
depending on the particular setting of the environment. We investigate two such settings 
as separate sub-conditions. Details below. 

o Motion here refers to an object’s kinematics in a 2-dimensional plane. 
Other physical properties like fluid dynamics, collisions, rotational acceleration, etc. can be 
investigated in future work. 
 
Hypotheses. The following are the possibilities - 
H1. The IPE has no distinct regions which are sensitive to either the physics of motion or the 
physics of stability. 
H2. The IPE has a region sensitive only to motion but not stability. 
H3. The IPE has no region sensitive to motion, but has a region sensitive only to stability. 
H4. The IPE has regions sensitive to both, motion and stability. 
H5. The IPE has distinct regions sensitive to both, motion and stability. 
 
Stimuli design and details. 

 To keep the entire analysis simple, this experiment focuses on scenes with only a single 
object being present in a scene. This analysis can be extended to multiple objects, but 
would then have to control for the effect of collision, which is a distinct physics 
phenomenon in itself. 

 The physics of motion is described in two settings in the stimuli – linear, and curvilinear. 
o Linear motion refers to a body’s motion whose locus is a straight line.  

e.g. the motion of a runner running on a straight road. 
o Curvilinear motion refers to a body’s motion whose locus is a part of a circle.  

e.g. the trajectory of a ball thrown from a cliff. 
 The physics of stability is described in two settings – stacked, inclined. 

o Stacked stability refers to the condition when the net forces on the center of 
mass of a system of objects is zero. Although this physics of this is best 
illustrated with multiple bodies stacked one atop other, we choose the situation 
where an object is placed at the tip of surface like a table. 

o Stability on an incline refers to the condition when the net forces acting on an 
object placed on an inclined plane is zero. Key concepts in physics determining 
such a stability are 

 Incline of the plane 
e.g. a higher incline increases the component of gravity acting on the 
body, and hence will cause it to roll or tumble. 

 Mass, and consequently the moment of inertia of the object 
e.g. a spherical object will tend to roll down a plane no matter how small 
the incline. A box will not. 

 Friction of the surface. 
e.g. an icy surface will cause even a box on a small incline to slide down. 

In this work, we focus only on varying the incline to depict stability or the lack of 
it. The surface in each scene is a wooden wedge, and the object is a cube. 



See subsection ‘Content design’ and ‘Discussion’ for a note on the differences 
between these two sub conditions that might affect this experiment. 

 This experiment can be carried out with 2x2 unique items (with repetitions), and in 
principle be extended to any number of such categories. The current design can be 
illustrated as - 

 The stimuli can be presented in two formats – statics images, or very short video clips. 
Short video clips have these advantages –  

o They can depict the physics of motion naturally. Static images would need traces 
or hashed lines to depict motion. 

o Videos of stability will involve objects falling or tumbling, which also involves 
motion. This will allow us to then compare the two conditions – Motion vs. motion 
induced by instability, and check for a possible confound. 

We hence choose to use 3 second visual clips. 
 Content generation. There exist three choices for content generation – 

o Manually design animated versions of the content using a graphics editor. 
o Source videos from YouTube or other popular sites and edit and ensure they fit 

the requirement. 
o Shoot videos in a simple setup using a decent camera. 

Option 1 will likely be the most convenient. It will also allow for easy control over 
variability and noise in the depicted scenes. 

 Content design. All the main content will be placed at the center of the screen, to 
minimize eyeball movement. To control for the shape of the object, a cuboid/box is used 
in both, Motion and Stability stimuli. 
In Motion stimuli, the three seconds interval will depict a box moving from one point to 
another, either along a line or a curve. The direction of movement is randomized. This is 
done to see if the concepts generalize across such minor variations. A box moving from 
the top to bottom of the screen, or from left to right still signifies motion. We investigate 
whether this abstraction is captured in the representations. 

In Stability stimuli, the two second interval will start with an object either at the edge of a 
surface (stacked), or at the top of a wedge (incline). In half the cases, the object falls 
down or tumbles down, and in the other half remains stationary.  
Important. As demonstrated in the subsequent experiment, we design these stimuli 
such that there is distinct activity that happens in the last 1 second of the video. For the 

Physics of object 

Motion Stability 

Linear Curvilinear Incline Stacked 



motion stimuli, this pertains to the box simply following through with the trajectory shown 
in the first two seconds. For the stability stimuli, this crucially pertains to the object falling 
or tumbling during this last one second (in the case it is presented in an unstable 
scenario). 

o The angles of the incline are sampled from the set theta = {10, 30, 70} degrees. 
o The distance of the edge of the box from the tip of the table top is sampled from 

the set len = {L-0.1, L/2, L/5}, where L is the edge length of the box. Lesser the 
distance, higher its stability. The stacked setting in the image below corresponds 
to L/5.  

o When len = L-0.1 (right at the edge of the table), and when theta=70 (steep 
wedge incline), the condition of stability is conveyed by showing the box to jitter 
and seemingly just managing to balance itself.  

 Number of stimuli. The total number generated for the experiment are 
o # repetitions for each condition: 20 (will get a second opinion from advisor on 

whether this number will be sufficient). 
o # unique (Motion, Linear) items: 6 (with differing start positions and direction of 

uniform motion) 
o # unique (Motion, Curvilinear) items: 6 (with differing start positions, and arc 

lengths of the uniform motion) 
o # unique (Stability, Inclined) items: 3 + 3 (for each angle of the wedge, equal 

number of stable and unstable situations). 
o # unique (Stability, Stacked) items: 3 + 3 (for each length from tip, equal number 

of stable and unstable situations). 
o Total items = 20 x (6 + 6 + 6 + 6) = 480 
o Each video takes 3 seconds; Hence, experiment scan time = 480 x 3 = 24 

minutes. (This is a lower bound. See below for total scan time.) 
o To keep it simple, repetitions will be exact replicas of the 24 unique items. 

 Stimuli presentation. 
o Each run will contain 24x2 = 48 items, i.e. one set of unique items + one set of its 

repetitions.  
o Hence, total number of runs = 480 / 48 = 10. 
o This is modeled as a one-back test to ensure the participant is paying attention. 

At the end of each stimulus, show a blank screen for 3 seconds, during which 
time the participant presses either A or B to signify whether the stimulus she just 
saw was the same as the one preceding it or not, respectively.  

 Note – Can perhaps reduce the 3s time window to something lesser. 
Unsure. 

o The order of the 48 items in a given run is quasi random, to ensure there are at 
least a few items which pass the one back test. 

o Time per run = (3+3) seconds x 48 items = ~5 minutes. 
o Total time = (Time per run x Number of runs) = 5 x 10 = ~50 minutes.  
o One break midway can be provided to the participant. 
o The total experiment time will be 50 minutes + the amount of time takes to run 

the stimuli in Fischer et al. 
 
Experiment procedure.  

 Contact the authors of Fischer et al. [1] and obtain their stimuli. 
 Run the stimuli used in experiment 1 and/or 2 to localize the ROI identified in their work. 
 Run the current design of 480 items spread over 10 runs. 



 We also run the eye saccade experiment as in [1] to account for eye movement in the 
ROI. 

 
Data analysis and preparing base similarity matrices for RSA to compare against. 

 Obtain the activations in the ROI identified in [1] and replicate results of experiments 1 
and/or 2. 

 All analysis of the current design will first be done in these identified regions. 
 Divide the identified regions of interest into sub-regions of an appropriate dimension. 
 For all voxels in a sub-region whose activity was measured during the time period when 

the participant was shown the stimulus (and not when she responded to the one-back 
test), obtain the correlation between every two conditions in this experiment. Average it 
out by the number of replications. Calculate the average correlation (absolute values) for 
the entire set of voxels and represent it as a 48x48 matrix as show in Figure 2. We refer 
to this matrix as F_k, where the subscript denotes sub-region k. 

 This provides the representation matrix along the 2 main conditions (Motion, Stability) 
and 2 sub conditions each (Linear, Curvilinear; Stacked, Inclined). 

 Such a matrix would need to be compared against a reference matrix. We obtain these 
reference matrices by showing the stimuli to subject matter experts (SME). In our case, 
these are two physics grad students at MIT. For each stimulus, we ask the SMEs to 
answer five questions (details below) and get them to answer them on a scale of 1-10. 
After this exercise, the inter-rater correlation is verified, and if sufficiently high (>0.85), 
we proceed with our analysis. The five reference matrices are then simply the correlation 
of their average response across the four conditions. 

 
 We ask the following questions to the SMEs – 

o Baseline 1 (B1). The stimulus depicts the concept of Motion. Rate 1-10. 
o Baseline 2 (B2). The stimulus depicts the concept of Stability. Rate 1-10. 



o Hand labeled – Motion (HLM). The entire length of the video contains an object 
in uniform motion in a 2D plane, with net resultant force being zero. Rate 1-10. 

o Hand labeled – Motion – Strict (HLMS). The video contains, at some point, an 
object in motion in a 2D plane. Rate 1-10. 

o Hand labeled – Forces (HLF). The video contains an object whose stable state 
position is affected by the resultant force acting on its center of mass. Rate 1-10. 

 We expect HLM, HLMS, and HLF to be represented as shown below. Further, we expect 
B1 to correspond to HLM and B2 to correspond to HLF respectively. In case it does not, 
we could proceed with HLM, HLMS, and HLF for the remainder of our analysis.  

 We create a 48x48 matrix Random containing random correlations sampled uniformly 
between [0.1, 0.8]. This serves as a baseline. 

 In the illustration of expected hand labeled matrices, the reason for HLMS having a 
higher correlation in the top two boxes in the right quadrant is that the process of falling 
and tumbling may be perceived as motion. If there exist regions sensitive only to motion, 
then the fMRI voxel correlation matrix will be similar to HLMS over HLM. 

 We started with five possibilities regarding sub regions in the ROI (refer to subsection 
Hypotheses at the beginning of this section). We enumerate the possibilities of data we 
expect to see against each such hypothesis. 

o If H1 is true, then the fMRI matrix for a sub-region k, F_k, will not correlate with 
any of HLM, HLMS, HLF, or HLB. It will rather correlate with Random. 

o If H2 is true, F_k will correlate with HLMS most likely, over HLM. It would be an 
interesting case if it correlates with HLM > HLMS. Also, it will not correlate with 
HLF. 

o If H3 is true, F_k will correlate highly with HLF but not HLMS or HLM. 
o If H4 is true, F_k will correlate highly with HLMS/HLM and HLF. 
o If H5 is true, F_k will correlate highly with HMLS/HML and F_s will correlate with 

HLF, for two different sub-regions k and s in the ROI. 
o Another possibility is that all sub-regions regions k more or less are highly 

correlated with both, HLMS and HLF. 
 Other analyses. Other aspects such as the sensitivity of regions to the angle of the 

wedge, how far the box is placed from the edge of the table, direction of motion, etc. can 
be measured as well through a similar RSA analysis. This will require getting SMEs to 
create hand-labeled representation matrices as before, quantifying these measures of 
interest. 

 
Discussion. 

Alternate explanations.  
 If the data turns out in a way that there exist sub-regions sensitive to only a fraction of 

the stability items, a possible explanation could be the difference in the physics being 
applied in the two stability sub conditions. While the incline condition relies on friction 
and angle of incline, the stacked relies purely on center of mass imbalance. This could 
further be investigated by getting the SMEs to reevaluating the HLF matrix with this 
specific distinction in mind to see if that really explains the fMRI data. 



 If the RSA analysis points to H5 being true (i.e. there exist distinct sub-regions sensitive 
to motion and stability respectively), the simplest possible explanation could be that the 
stability stimuli had more objects than the motion stimuli. Notice, in each of our stability 
stimuli, we place the object on a wedge or a table. This region could simply be sensitive 
to the number of objects and not the physics of stability of an object. We did consider 
stimuli which cleverly demonstrated object stability without it having to rest on any 
surface. For example, this top can be shown to topple without a reference. However, we 
wanted to cover a wider variety of conditions that we see every day on common objects. 

 
If this is the only alternate explanation feasible, a simple follow up experiment can be 
conducted to identify the sensitivity of this specific sub-region to differing number of 
objects in a scene. 

 
If on running additional experiments to account for the alternate explanations mentioned above, 
we find that H5 continues to be validated by our data, we are encouraged to consider the 
possibility that regions indeed are specialized to contain information regarding motion and 
stability respectively. 
We design the following experiment as a stronger test to verify if these regions indeed store 
specific information on motion and stability. 
 
Experiment 2. 
Motivation.  
If we find separate regions in the IPE which are sensitive to the physics of motion and the 
physics of stability respectively, a natural question that follows is what information is really being 
represented in these regions.  
 
To contrast the working of this region, consider a computational physics engine designed to 
model the motion of an object. It would consider as inputs the current velocity (position, speed) 
of the object and the forces acting on it. For a given time instance T, it will internally compute 
how the laws of motion would affect its velocity. The actual algorithm could be probabilistic (as 
suggested in [2]) or determinstic. It then outputs its prediction. If we were to model the IPE’s 
sub-regions for motion similarly, we then expect the region to be the component which 
computes the final position of the modified object. It should then be possible to decode this 
information to perform motion-related predictions. We can make a similar argument for 
predicting stability information. 
 
Hypotheses. 

 H1. Information in the motion regions cannot be decoded to predict motion. Similarly, 
information in the stability regions cannot be decoded to predict stability conditions. 

 H2. Information in the motion regions can be decoded to predict motion. Information in 
the stability regions are able to predict stability conditions. Moreover, information in the 
stability regions cannot be decoded to predict motion. Similarly, information in the motion 
regions cannot be decoded to predict stability. 



 H3. Other two permutations between what information can be decoded and predicted. 
 
Experiment design. 
This experiment can be designed in two ways. 

 The first is to simply tweak data from the previous experiment to fit the requirements of 
this experiment. In this experiment, want to consider the representation which likely 
pertains to the subject having internally computed and utilized her IPE to predict what 
happens next in the scene. One approximation could be to consider the neural activity in 
the first 2 seconds of the video only, since by the stimuli design (see subsection Content 
Design in the previous experiment), the critical activity, if any, happens only in the last 
one second. Hence, if our hypothesis of what is represented in this region is correct, the 
representation formed at the end of the first two seconds ought to be sufficient to predict 
what happens at the end of the third second. 

 The other way is to present the same stimuli as the previous experiment, but stop the 
video at the end of 2 seconds. Instead of presenting this as a one-back task, present 
four options for the possible final state, and ask the participant to endorse one of them.  
An illustration of the stimuli and expected response –  

 
 Discussion on design choice. 

The second design presents a cleaner structure tailored to elicit specific predictive 
information at the end of the third second. However, it also suffers from the risk of 
attention being paid to the specific task, as a consequence of which the neural activity in 
these regions may contain this predictive information. Even if this were the case, it would 
be an interesting result.  
 
For the purposes of this experiment and write up, we proceed with the former choice of 
analyzing information present at the end of the 2nd second. We will subsequently run the 
other design choice as well. 

 
Experiment details. 

 Since we proceed with a post-hoc analysis of the information captured in the previous 
experiment, we do not need to test any subjects on any stimuli. 

 If we were to implement the latter design choice, every configuration decided in the 
previous would remain the same barring what the subject does – in this scenario, she 
will be required to guess the most likely configuration at the end of the third second from 
three choices shown to her after the stimulus ends. This does not affect our analysis 
since we look at activation data pertaining to only the two seconds when the stimulus 
was shown to the subject, and not when the subject was responding to the behavioral 
task. 



 

 
Analysis. 

 We split the data into an 80-20 train and test set across each of the four sub-conditions. 
 We train a decoder for each of these sub conditions separately. They are annotated as – 

D-LM (linear-motion), D-CM (curvilinear-motion), D-SS (stacked-stability), D-IS (inclined-
stability) 

 We design decoders using the architecture shown above. Each decoder will be input the 
voxel frames until t=2 seconds. A CNN layer would then be trained to produce a 
representation vector of the activity capturing all the information in the voxel frames. The 
signal to train the CNN would be the error incurred in decoding the predicted position of 
the object. For the stacked-stability stimuli, the decoder can be replaced with a binary 
classifier of whether the object would fall or not. For the rest, the positions from both, the 
wedge (stability) and the 2-D plane (motion) can be linearized to be represented as a 1-
D vector of coordinates. 

 Once the classifiers are trained, any data point pushed into the decoder will produce an 
intermediate representations which capture the average neural activity at the end of 2 
seconds – R-CM, R-LM, R-IS, R-IS. 

 On the test set, we pass the each conditions’ dataset into each decoders and measure 
accuracies. We expect a 4x4 table of accuracies. 
 

Discussion. 
 If the hypothesis is true that the regions indeed serve as a physics engine, and compute 

physical properties of objects presented in a scene, we would expect the decoder 
accuracies to be tabulated as above. Here, we observe that the decoders LM and CM 
generalize enough to accurately classify motion regardless of it being linear or 



curvilinear. Likewise, the stability decoders predict irrespective of which stability related 
condition is provided as input. Such a result also demonstrates exclusivity, in that 
information processed in the stability regions do not contain any information about 
motion and vice versa. 

 Such accuracy results would also settle the alternate explanation raised in the previous 
experiment. This data would clearly show that there is meaningful and exclusive 
information being stored in the stability regions of the IPE. To further test it, another 
decoder can be trained to predict the number of objects in a scene, and SS, IS data can 
be fed to it to see if it predicts such information well. 

 In case this hypothesis was not fully true, and instead linear information was computed 
differently than curvilinear information, then the CM--D-LM square and LM—D-CM 
square would show low accuracy information. The same would follow for the stability 
regions as well. 

 
Conclusion. 
This work proposes two experiments to answer whether different physics operations are 
processed differently in the IPE, and if they are, what information such regions contain. This 
work leads to other important questions regarding the IPE such as  

 whether there exist other regions for other physics operations,  
 how do these regions communicate with each other,  
 whether affecting these regions using TMS would impede internal simulation 
 do these regions have a spatial map, akin to a retinotopic map, which is sensitive to the 

range of inputs for the operation it specializes in? 
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Note - This was an initial idea which I started working on, which later was shelved.  The 
goal was to stick to simple behavioral experiments to discover some interesting 
information about the IPE. Only later did I find out there’s a related work which addresses 
parts of this question. 
 

Specifying the architecture of an Intuitive Physics Engine (IPE) 
Shashank Srikant, shash@mit.edu 

 
Introduction. 
Humans are hypothesized to be equipped with an intuitive physics engine (IPE). Through 
different psychophysical tasks, Battaglia et al. [1] showed that an IPE can be modeled as 
physics engines used in computer graphics programs. Quoting from their work, “these models 
use approximate, probabilistic simulations to make robust and fast inferences in complex natural 
scenes where crucial information is unobserved”.  
While this work attempts to model the algorithmic aspects of an IPE, the question of what the 
overall architecture of this engine might be, and what it might be parameterized by are left 
unexplored. A commercial physics engine, such as the one used in [1], typically allows to 
overspecify the set of properties associated with each object in a scene, such as its coordinates, 
angular momentum, instantaneous acceleration, etc. Likewise, it computes values for each such 
property at the end of its simulation run. Is our IPE as resourceful? Can we access values of 
various properties associated with an object at the end of our “mental simulation” of a scene, or 
is it restricted to a specific set?  
  
Fully specifying the engine, i.e. knowing what its inputs and outputs possibly can be, will likely 
reveal the nature of physical tasks we can intuitively reason about. Are we adept at predicting 
just about any property of an object in a physical scene, or are there limited properties we are 
capable of inferring. For instance, when shown a ball moving in a curvilinear motion, we seem to 
quickly be able to infer the location of the ball at any point in the future. But shown the same 
image, can we predict other properties of the ball, such as its instantaneous speed, or its 
acceleration?  Similarly, it is not clear what inputs the IPE is parameterized by. Are common 
forces of nature acting on a body, such as gravity and friction, already “baked into” the IPE, or 
are they explicitly input to the system? Can the IPE accommodate and learn new values for 
these forces when subject to different environments?  
Consequently, answering this will allow us to understand which tasks can even be labeled as 
those requiring “intuitive physics”. Current work does not attempt to answer this question either.

 


