
1

1. INTRODUCTION .. 4

1.1. ABSTRACT ... 4

1.2. PROBLEM STATEMENT .. 4

1.3. MOTIVATION FOR THE PROJECT .. 5

1.4. AIM OF THE PROJECT ... 5

1.5. ORGANIZATION OF THE REPORT .. 5

2. REQUIREMENTS ANALYSIS .. 6

2.1. INITIAL STUDY OF FUNCTIONAL REQUIREMENTS ... 6

2.2. FEASIBILITY STUDY .. 6

2.3. IMPLEMENTATION DETAILS ... 6

2.3.1. Web Browser Add-ons ... 7

2.3.2. Database Requirement ... 7

2.3.3. Ontology Tools ... 7

2.4. A MATHEMATICAL MODEL TO LEARN USER INTERESTS ... 7

2.5. RANKING OF INFERRED TOPICS OF INTEREST .. 8

2.6. TECHNOLOGIES TO BE USED .. 8

3. SOFTWARE REQUIREMENTS SPECIFICATION ... 9

3.1. INTRODUCTION .. 9

3.1.1. Purpose .. 9

3.1.2. Scope .. 9

3.1.3. Definitions, Acronyms and Abbreviations ... 10

3.1.4. References .. 10

3.1.5. Overview .. 10

3.2. OVERALL DESCRIPTION... 11

3.2.1. Product Perspective ... 11

3.2.2. User Characteristics .. 13

3.2.3. Constraints ... 13

3.2.4. Assumptions and Dependencies ... 13

4. SOFTWARE DESIGN DOCUMENT .. 18

4.1. INTRODUCTION .. 18

4.1.1. Purpose .. 18

4.1.2. Scope .. 18

4.1.3. Definitions, Acronyms and Abbreviations ... 19

4.1.4. References .. 19

4.1.5. Overview .. 19

TABLE OF CONTENTS

2

4.2. ARCHITECTURE OVERVIEW ... 20

4.3. DESIGN OVERVIEW ... 21

4.3.1. Use-Cases .. 21

4.4. DATA FLOW DIAGRAM .. 24

4.5. DECOMPOSITION DESCRIPTION ... 25

4.5.1. Learning Engine .. 25

4.5.2. Motivation .. 25

4.5.3. Graph based Page-Visitation Metric ... 26

4.5.4. Algorithm ... 28

4.6. DATA DESIGN.. 29

4.6.1. Design Motivation ... 29

4.6.2. Logical Design Elements ... 30

4.6.3. Entity-Relationship Diagram ... 30

4.6.4. Data Dictionary ... 31

4.7. INTERACTION VIEWPOINTS.. 33

5. HUMAN INTERFACE DESIGN ... 35

5.1. OVERVIEW OF USER INTERFACE.. 35

5.2. DESIGN .. 35

5.2.1. Constraints ... 35

5.2.2. Features ... 35

5.3. SCREENSHOTS ... 36

5.3.1. Visibility Control Button .. 36

5.3.2. List of suggested links .. 36

5.3.3. Dedicated tab for each link .. 37

5.3.4. Links When Marked as Read.. 37

5.3.5. Options Pane to Set Configurable Parameters .. 37

6. PROJECT PLAN ... 38

6.1. PROPOSED PLAN FOR THE EXECUTION OF PROJECT ... 38

6.2. REALIZED PLAN FOR THE EXECUTION OF THE PROJECT .. 39

7. MANAGEMENT PLAN .. 40

7.1. TEAM INTRODUCTION ... 40

7.2. WORK DIVISION .. 40

8. DEVELOPMENT CYCLE ... 41

9. IMPLEMENTATION.. 43

9.1. THE XPI .. 43

3

9.1.1. XPI Contents .. 43

9.2. LANGUAGES USED .. 44

9.3. APIS USED ... 44

9.3.1. Textwise ... 44

9.3.2. Bing .. 45

9.4. IMPLEMENTATION SPECIFICS ... 45

9.4.1. Semantic Analyzer ... 45

9.4.2. Leaning Engine .. 45

9.4.3. Suggestion Engine ... 45

9.4.4. User-Interface Engine .. 46

10. TEST PLAN ... 47

10.1. CAPTURING SESSION DETAILS.. 47

10.2. SIDEBAR .. 48

10.3. TESTING THE ALGORITHM ... 49

11. LIMITATIONS AND FUTURE SCOPE ... 50

12. REFERENCES ... 51

4

1. Introduction

1.1. Abstract

Suggestions4You aims to understand the semantic meaning behind a person’s web-browsing

activities. In web-browsers used today, there is a need to inherently learn and understand the

interests of a user so as to provide a richer browsing experience. The project aims to fulfill this

by using the following components –

• Browser Add-Ons to act as a middleware between a user and his/her web-browser.

• APIs for semantic analysis of web content

• Ranking Algorithms to organize the learned information of user tastes.

The project shall lead to the development of algorithms and finally, a software which shall learn

the general interest of the browsers and based on this information gathered, shall suggest related

links to provide a meaningful user experience.

1.2. Problem Statement

Web-browsing is an integral part of every person’s daily activities these days. A property of

web-browsing is that the content viewed via a web-browser is local to the user’s (person

browsing) tastes and preferences. Such an interest may be a result of an activity the user is

generally involved in. For example, a computer engineering student may look up information on

programming languages on a regular basis whereas a house-wife would generally like to look for

the latest in the fashion industry. Getting useful results for such areas of interest, however, is

independent of such a definite interest. The internet being the vast resource it is makes it difficult

to obtain a good range of results for a given topic. No mechanism currently exists which can

capture this general area of interest of the user. If there were a mechanism to do so, the interests

inferred could add to the effectiveness of the results displayed for queries. One approach to

design such a mechanism would be to suggest links in the topics of interests inferred even when

the user is not actively engaged in a searching activity while browsing the internet. The aim of

our project is to thus make use of this property of localization of browsing content based on of

the user’s interests and provide suggestions to make browsing a meaningful experience on the

World Wide Web.

5

1.3. Motivation for the Project

The motivation for such a project stems from our experience in the development of some

prediction systems in our Minor Project titled Transport4You. The exposure to some Machine

Learning techniques made us realize it’s applicability in various other domains. Web-browsing

being an everyday activity we perform, extrapolating concepts applied there suggested at

improving some of the existing functionality.

1.4. Aim of the Project

The project shall lead to the development of algorithms and finally, a software which shall learn

the general interest of the browsers and based on this information gathered, shall suggest related

links to provide a meaningful user experience.

1.5. Organization of the Report

This report is organized as follows:

Section 2 lists the key aspects identified in the requirements’ analysis of the project.

Section 3 contains the Software Requirements Specification of the project. This section is useful

for designers who wish to extend on the existing design.

Section 4 contains the Software Design Document of the project. This section is useful for teams

implementing the existing design.

Section 5 describes the interface design.

Section 6 contains our Project Plan. This lists out our schedule in the execution of the Project.

Section 7 contains our team’s Management Plan.

Section 8 describes the Development Cycle followed in the implementation of our Project.

Section 9 lists out the implementation aspects of the project.

Section 10 discusses our test plan for the system developed.

Section 11 discusses some limitations and future scope of the work done.

Section 12 lists out the material referenced in our project.

6

2. Requirements Analysis

2.1. Initial study of functional requirements

Our initial study of the functional requirements included the identification of the following

functionalities-

i. Basic requirements which need to be fulfilled by the system

a. The system must be installable on an individual machine.

b. It should be able to learn the set of interests a user possesses. Such interests are

gathered from the queries entered by the user in a browser’s search bars.

c. Once learnt, the system must display links and information related to interests of

the user. This should be displayed on the browser as a continuous stream.

d. The suggested links and articles displayed should be fairly random and should

keep changing. This is required in order to increase the chances of a user liking

and using a particular suggestion displayed.

e. There should exist a non-intrusive feedback system, wherein a user may reflect on

the information learnt by the system.

ii. External Events

a. The user enters a query in a search-bar when looking for some information on the

internet. This may be followed by the results of the query being visited.

b. The user optionally provides a feedback on the interests inferred by the system.

iii. Temporal Events:

a. A user may have a particular field of interest for a given amount of time. The

interests inferred should reflect these changing tastes of the user.

b. The feedback provided is done keeping no particular time schedule in mind.

2.2. Feasibility Study

Based on the various key functional requirements identified in the previous sections, the

following aspects of the execution of the projects were analyzed in the course of our Feasibility

Study.

2.3. Implementation Details

As the group lacked a rich exposure in the various facets of the implementation tasks that would

have followed, much of the Requirements Analysis phase was spent in getting a clear idea of

7

how the different requirements analyzed would be implemented. Based on the analysis, the

group had a good grasp of the complexity of such sub-systems that would be required to be

implemented.

2.3.1. Web Browser Add-ons

Mozilla Firefox and Google Chrome, two popular web-browsers at the time of development of

this project, provide very good support for developing add-ons and extensions to it. The intended

system could function as an add-on, which would facilitate parsing of queries entered by the user

and using the machine’s resources to perform computations. Many popular Machine Learning

libraries such as Weka [1] and APIs of other ontology tools [2] can be accessed through such an

Add-on.

2.3.2. Database Requirement

The add-on would have to store the topics learnt either as a flat file or in a database. The

feasibility of a database connection to an add-on has been studied and found to be possible.

2.3.3. Ontology Tools

Several tools to determine the semantics of an input text are available. The APIs of such tools

maybe used in association with Add-on tools to parse and tag scanned web-pages, based on its

content.

2.4. A Mathematical Model to Learn User Interests

The system is capable of learning based on queries input by the user. Efficient Machine Learning

algorithms may be implemented based on mathematical (mostly probabilistic) models available.

In our case, the system has with it queries, which are incomplete English sentences. Based on

these queries and the subsequent web-pages viewed on entering such a query, the system should

infer the general topics to which the query pertains to. Having collected such topics discretely

through every search, the system should then be able to infer the general interests of the user.

The keywords specifying such an interest should be looked up on the internet and relevant

material needs to be displayed to the user.

Based on an initial study of the modeling techniques available, we have narrowed down on the a

technique called Probabilistic Latent Semantic Analysis to deal with our problem of predicting

interests based on queries provided. However, we have found multiple tools [2] on the internet

(along with their APIs) which are able to tag a given text-input. Such tools may directly be used

in our project.

8

2.5. Ranking of Inferred Topics of Interest

The topics inferred need to be ranked in order to prioritize the interests of the user. We have

identified the various parameters that shall contribute to such a ranking formula -

1. Frequency (word count)

2. Time of page opened

3. Through-links of search results

4. User feedback

2.6. Technologies to be used

i. Database : SQLite

ii. Web Based Technology to Develop Add-Ons: JSP/Python

iii. Data Formats: JSON/XML

iv. Ontology Tools: TagFinder, TextWise [2]

9

3. Software Requirements Specification

3.1. Introduction

3.1.1. Purpose

Web-browsing is an integral part of every person’s daily activities these days. A property of

web-browsing is that the content viewed via a web-browser is local to the user’s (person

browsing) tastes and preferences. Such an interest may be a result of an activity the user is

generally involved in. For example, a computer engineering student may look up information on

programming languages on a regular basis whereas a house-wife would generally like to look for

the latest in the fashion industry. Getting useful results for such areas of interest, however, is

independent of such a definite interest. The internet being the vast resource it is makes it difficult

to obtain a good range of results for a given topic. No mechanism currently exists which can

capture this general area of interest of the user. If there were a mechanism to do so, the interests

inferred could add to the effectiveness of the results displayed for queries. One approach to

design such a mechanism would be to suggest links in the topics of interests inferred even when

the user is not actively engaged in a searching activity while browsing the internet. The aim of

our project is to thus make use of this property of localization of browsing content based on the

user’s interests and provide suggestions to make browsing a meaningful experience on the World

Wide Web.

The motivation for such a project stems from our experience in the development of some

prediction systems in our Minor Project titled Transport4You. The exposure to some Machine

Learning techniques made us realize it’s applicability in various other domains. Web-browsing

being an everyday activity we perform, extrapolating concepts applied there suggested at

improving some of the existing functionality.

3.1.2. Scope

Suggestions4You aims to understand the semantic meaning behind a person’s web-browsing

activities. In web-browsers used today, there is a need to inherently learn and understand the

interests of a user so as to provide a richer browsing experience. The project aims to fulfill this

by using the following components –

• Browser Add-Ons to act as a middleware between a user and his/her web-browser.

• APIs for semantic analysis of web content

• Ranking Algorithms to organize the learned information of user tastes.

10

The project shall lead to the development of algorithms and finally, a software which shall learn

the general interest of the browsers and based on this information gathered, shall suggest related

links to provide a meaningful user experience.

3.1.3. Definitions, Acronyms and Abbreviations

• ‘the system’ unless specified otherwise, refers to the Suggestions4You system, in

general. Any sub-system of Suggestions4You is specified as a system in a given context.

• User is used to describe a person who browses the internet on his/her personal computer.

• Interest refers to the various interests of a User, which act as the basis for suggestion of

links by the system.

• Browser in the current context refers to a Mozilla Firefox web-browser. It specifically

refers to this product as the system being developed is currently supported on this

platform. Cross-platform independency is currently not aimed for. However, a browser in

a particular context may also refer to User. (Analogous to computer :one who computes)

• The text consistently uses she and her as the pronoun for a User. This is to generalize the

text and does not imply at any constraint on the gender of the person browsing.

3.1.4. References

The IEEE 830-1998 standard [4] of SRS documents was used as an outline for this document and

was consulted continuously throughout each section and subsection.

3.1.5. Overview

This document is organized as follows:

Sub-section 2 covers an overall description of the various functionalities provided by the system.

This section shall be useful for potential users/customers in order to understand the working of

the system.

Sub-section 3 covers the requirement specifications of the system. This section shall come in

handy to potential developers of the system. This section documents the specifications based on

Use Cases imagined and on the basis of the various stimuli to the system (considering it to be

event driven). The specifications include the functional requirements, non-functional

requirements and other miscellaneous requirements of the system.

11

Sub-Section 4 discusses requirements concerning the environment of the execution of the

project. It also lists out other non-functional requirements, implicit to the given problem

statement.

3.2. Overall Description

A User begins a browsing session by starting the web-browser. In order to obtain articles on a

topic she has in mind, the User searches the web through a search engine. On repeatedly looking

for articles on a topic, the system, which is installed on the User’s machine, is able to learn this

interest the User currently possesses. On having inferred such an interest, the system looks for

more articles on the web corresponding to such interests and keeps displaying obtained results on

the browser. The results are displayed presumably in a non-obtrusive way so as to enable the

User to carry on her normal functions on the web-browser and use these ‘extra’ results only if it

interests her.

In the case of a User possessing multiple interests and trying to look for topics related to each

such interest (which is what happens practically), the system identifies each such interest and

based on the relevance and ‘strength’ of the interest of the User, suggests links on the topics. As

an example, if a User possesses an interest in both, computer algorithms and chess, the links

displayed shall pertain to both these topics. However, if the interest in chess is only minor and is

restrained to checking scores on match days, the suggestions provided shall focus more on

computer algorithms than on results on chess.

The system shall also have a way to obtain a feedback from the User, wherein it calibrates its

calculations and inferences and determines if it agrees to the actual interests of the User. Based

on such a feedback, the system may correct any wrong inferences made.

3.2.1. Product Perspective

The current system being developed is web-browser dependent. This is so because the

development APIs for web-browsers is not supported for all available browsers. Also, there

exists no common cross-platform API solution for the browsers. Mozilla Firefox, having the best

developer community for Add-on development, is the natural choice for the deployment of such

a system.

The core-functionalities of the proposed system do exist as individual components of logic in

various software systems throughout different application domains. StumbleUpon [6], for

example, is a discovery engine (a form of web search engine) that finds and recommends web

12

content to its users. Its features allow users to discover and rate Web pages, photos, and videos

that are personalized to their tastes and interests using peer-sourcing and social-

networking principles. Our system differs from a discovery engine such as StumbleUpon in the

following aspects –

• No explicit tagging of pages is required to let the system know of the User’s interest.

• The repository of searches is contained to the machine on which the browsing activity is

performed. Hence, the results and inferences are quick and contained to the tastes of the

Users.

The major components interacting with the system can be understood from Figure 3.1. Software

Ideas Modeler [7] was used for the design of this figure.

Referring to Figure 3.1, we see that the external users of the system are

• Users

• Web Browser

3.2.1.1. User Interfaces

The interface between a User and the system relies on certain key assumptions described in the

Assumptions and Dependencies sub-section. It is assumed that every user has a web-browser and

has enabled Javascript on it.

3.2.1.2. Hardware Interfaces

No hardware interfaces exist.

Figure 3.1- Context diagram for the Suggestions4You System

13

3.2.1.3. Software Interfaces

The system relies on the following software for its functionality –

i. Name: Mozilla Firefox

ii. Mnemonic: Firefox

iii. Version: Minimum 3.6.1

This software is used to support the functionality of the entire system. An appropriate scripting

technology, which shall be the core technology to run the algorithms, shall be run through this

platform.

3.2.1.4. Communications Interfaces

No communication interfaces exist.

3.2.1.5. Memory Constraints

We assume that the minimal physical memory is utilized to operate our system. No specific

constraints, however, exists.

3.2.1.6. Site Adaptation Requirements

No explicit site information is mentionable.

3.2.2. User Characteristics

No special qualification concerning a User’s technical expertise, experience or educational level

is mentionable.

3.2.3. Constraints

i. The performance of the browser should not be hindered because of the existence of the

system.

ii. Minimum bandwidth utilization should be made by the system.

iii. The links suggested should be ‘fresh’ in the sense that a new set of links to a given topic

needs to be generated as often as possible.

3.2.4. Assumptions and Dependencies

i. The web-browser used is Mozilla Firefox.

ii. It’s assumed that the majority of usage is by one user only. This localizes the interest

of the user.

iii. There needs to exist a tangible, recognizable set of interests the user possesses in

order to produce best results.

iv. The User enables scripting facilities of the browser at all times.

14

3.3. Specific Requirements

3.3.1. External Interfaces

3.3.1.1. Display Suggested Links

Name of Item: Display Suggested Links

Description of Purpose:

This interface will suggest interest specific links to the user in a non intrusive behavior.

Source of Input or Destination of Output:

Based upon the interest learnt by the Suggestion engine, the engine downloads Suggestion links

from the internet.

The suggestion links are then displayed onto the pull down menu.

Timing:

The links are displayed to the user whenever the user clicks the Suggestions option provided on

top of the web page.

The links provided on the Suggestion’s pull down menu should refreshed once the user visits the

suggested links or after some fixed interval of time.

Relationships to Other Inputs/Outputs – No relationship

Data Formats – The information about the user interests is available from the database store,

which will be in varchar format.

 Command Formats – No explicit commands. GUI available for input.

Screen Formats/Organization

Figure 3.2– Pull-Down Suggestions Menu

15

End Messages – No end messages, just the menu of the suggested links to be displayed.

3.3.2. Functions

The functions of the system identified here are on the basis of the various stages of the system

mainly, capturing the behavior of the user from its browsing activities, displaying the interest

specific links and finally getting the feedback from the user.

Some of the key functions of the system identified are –

3.3.2.1. Behavior Capture

The user browses the internet

Validity checks on the inputs

Since there shall be no direct input from the user, the engine shall capture the behavior from the

user activities like,

- search queries being entered.

- sequence of links followed.

- time spent on a particular page.

These events shall form the input to this function.

Exact sequence of operations

- User opens his web browser to surf the web.

- User may enter a search query or URL.

Figure 3.3–Proposed Look and Feel for the Suggestions

16

- User may navigate from one web page to other web page by clicking on the links on the

web page.

- User may enter a new query or URL.

- User may open a new tab and starts a new session of web browsing.

- User spends time reading the content of the web page.

- The user closes the web browser.

Responses to abnormal situations

- Browser may crash mid-way: The database of inferred interests should remain consistent

and may omit the most recent session’s inference.

- One of the property files of Add-on is deleted – There is no response which can get the

system back to normalcy. All information shall be lost in that case. An appropriate

message to uninstall the existing system should be provided.

Effect of parameters

Interest-driven browsing shall assist in its identification by the system. This may update the

already learned interests of the system or shall add a new interest to the system.

Input /Output sequences

The input is User generated browsing.

There is no visible output. The calculations performed are reflected in the following function.

3.3.2.2. Display Suggested Links

Validity checks on the inputs

No inputs are expected from the User.

Exact sequence of operations

- Links on the inferred interests are shown in the drop-down menu (as described in Figure

3.2,3.3)

- The content in this menu is dynamically updated based on the interests learned.

- Clicking on any of the displayed links will redirect to the intended page of interest.

Responses to abnormal situations

- Internet connection is disabled – The last shown links should be displayed.

- The scripting features of the web browser are switched off – A message notifying the

User to switch on such features should be displayed.

Effect of parameters

17

The click on a link opens a new tab/window which displays the suggested link.

Input /Output sequences

Input involves a User clicking on a suggested link.

The output is the suggested link being displayed on the browser.

3.3.2.3. Feedback

This function needs to ascertain the topics of interest inferred by the system. The nature of input

and output are left to the designers to choose. However, it must be noted that the system

developed should be as unobtrusive as possible to the User’s normal browsing activities.

Effect of parameters

The input should be able to calibrate the interests learned so far and correct the status of any

learned interests if found incorrect. The status of an interest refers to the relative importance that

interest has among all inferred interests. Please refer to Section 3.2, Overall Description, for a

description on multiple interest inference.

3.4. Non-Functional Requirements

3.4.1. Unobtrusive Presence

The presence of the proposed system on the web browser should not hinder the normal activities

of a User. Minimal feedback from the system should be initiated. Also, the performance of the

web browser should not degrade with the new add-on installed.

3.4.2. Ease of Use

The display of suggestions should be easily accessible.

3.4.3. Quality of Links

The links on a given topic of interest need to be refreshed over a period of time. The quality of

the links should be high in relation to the relevance of the content and the corresponding interest.

3.4.4. Operating Environment Requirements

3.4.4.1. Hardware

No special hardware is needed to support the system. A personal computer with a modest

configuration should do.

3.4.4.2. Software

A Linux/Windows/Mac operating environment should support the system. The system may also

need to be able to access a database system to store and perform intermediate computations.

18

4. Software Design Document

4.1. Introduction

4.1.1. Purpose

Web-browsing is an integral part of every person’s daily activities these days. A property of

web-browsing is that the content viewed via a web-browser is local to the user’s (person

browsing) tastes and preferences. Such an interest may be a result of an activity the user is

generally involved in. For example, a computer engineering student may look up information on

programming languages on a regular basis whereas a house-wife would generally like to look for

the latest in the fashion industry. Getting useful results for such areas of interest, however, is

independent of such a definite interest. The internet being the vast resource it is makes it difficult

to obtain a good range of results for a given topic. No mechanism currently exists which can

capture this general area of interest of the user. If there were a mechanism to do so, the interests

inferred could add to the effectiveness of the results displayed for queries. One approach to

design such a mechanism would be to suggest links in the topics of interests inferred even when

the user is not actively engaged in a searching activity while browsing the internet. The aim of

our project is to thus make use of this property of localization of browsing content based on the

user’s interests and provide suggestions to make browsing a meaningful experience on the World

Wide Web.

The motivation for such a project stems from our experience in the development of some

prediction systems in our Minor Project titled Transport4You. The exposure to some Machine

Learning techniques made us realize it’s applicability in various other domains. Web-browsing

being an everyday activity we perform, extrapolating concepts applied there suggested at

improving some of the existing functionality.

4.1.2. Scope

Suggestions4You aims to understand the semantic meaning behind a person’s web-browsing

activities. In web-browsers used today, there is a need to inherently learn and understand the

interests of a user so as to provide a richer browsing experience. The project aims to fulfill this

by using the following components –

• Browser Add-Ons to act as a middleware between a user and his/her web-browser.

• APIs for semantic analysis of web content

• Ranking Algorithms to organize the learned information of user tastes.

19

The project shall lead to the development of algorithms and finally, a software which shall learn

the general interest of the browsers and based on this information gathered, shall suggest related

links to provide a meaningful user experience.

4.1.3. Definitions, Acronyms and Abbreviations

• ‘the system’ unless specified otherwise, refers to the Suggestions4You system, in

general. Any sub-system of Suggestions4You is specified as a system in a given context.

• User is used to describe a person who browses the internet on his/her personal computer.

• Interest refers to the various interests of a User, which act as the basis for suggestion of

links by the system.

• Browser in the current context refers to a Mozilla Firefox web-browser. It specifically

refers to this product as the system being developed is currently supported on this

platform. Cross-platform independency is currently not aimed for. However, a browser in

a particular context may also refer to User. (Analogous to computer :one who computes)

• The text consistently uses she and her as the pronoun for a User. This is to generalize the

text and does not imply at any constraint on the gender of the person browsing.

4.1.4. References

The IEEE 830-1998 standard [5] of SRS documents was used as an outline for this document and

was consulted continuously throughout each section and subsection.

4.1.5. Overview

This document is organized as follows:

Sub-section 2 covers an overall description of the various functionalities provided by the system.

This section shall be useful for potential users/customers in order to understand the working of

the system.

Sub-section 3 covers the requirement specifications of the system. This section shall come in

handy to potential developers of the system. This section documents the specifications based on

Use Cases imagined and on the basis of the various stimuli to the system (considering it to be

event driven). The specifications include the functional requirements, non-functional

requirements and other miscellaneous requirements of the system.

Sub-Section 4 discusses requirements concerning the environment of the execution of the

project. It also lists out other non-functional requirements, implicit to the given problem

statement.

20

4.2. Architecture Overview

Suggestions4You will be an add-on which acts as a middleware between the user (effectively, the

user’s web browser) and the web.

As shown in Fig. 1, Suggestions4You shall comprise the following components:

• Semantic Analyser

The Semantic Analyser will analyse the user’s browsing content. It will then generate

tags and create a feature vector for user interests. For the purpose of the project, pre-

existing APIs will be used for the semantic analysis of web content and generation of

tags.

• Learning Engine

The Learning Engine will use the feature vector created by the Semantic Analyser and

certain other parameters and then use ranking algorithms on them to rank user interests.

These results will then be stored on the local data-store of the browser.

• Local Datastore

Suggestions to a user will be based on their local browsing. The Local Datastore of the

browser will contain all the ranking data based on user history.

• Suggestion Engine

Figure 4.1 - System Architecture

21

The Suggestion Engine will create suggestions based on ranking data and related content

from the web in order to be shown to the user.

• User-Interface Engine

The User-Interface Engine will display the final suggestions to the user in an appropriate

format. This will be responsible for the actual data that gets displayed to the user.

4.3. Design Overview

4.3.1. Use-Cases

The primary actors identified in our system are –

• User

• Web-Browser Extension

A User is one who would be surfing the web for information. She may perform the following

actions when doing so –

• Enter a query in a search/address bar

• Visit results of the query provided

• Visit links suggested by our system

The Web-browser Extension is essentially the entire Suggestions4You system. Every query

entered by the User goes through this extension. On entering a query, the system parses the

results of the query and classifies them into semantic-rich signatures. The signatures describe the

Figure 4.2 - Use-Case depicting high level design of system

22

topics these results belong to. The system collects every analyzed signature and then ranks them

according to relevance to the User. These ranked signatures are then made use of to search the

web independently in order to provide additional links in the recognized topics of interest. The

suggestions gathered are then conveniently displayed on the web-browser.

As a mechanism to ensure the relevance of the suggestions provided by the system, a User

visiting the suggested links is used as feedback to improve the quality of future suggestions.

The flow of events among the various use-cases described in Figure 4.2 has been described

below.

• browseInternet:

• captureBehaviour:

Use case name browseInternet

Participating

Actors

Initiated by User

Communicates with web browser extension

Includes captureBehaviour.

Flow of events

* User enters query or URL in the address bar.

* The browser performs the respective action and generated the results.

* The extension calls captureBehavious to capture the users’ behaviour.

* The user enters a new query in the search bar or a address bar, the extension

saves the data for the current session.

Entry

condition

The user enters a Query or URL in the web browser.

Exit condition The user manually enters a new query in the address bar.

Use case name captureBehaviour

Flow of events * The extension captures the tags or the keywords from the queries entered or

content visited.

Entry condition The user enters a Query or URL in the web browser.

Exit condition The user manually enters a new query in the address bar.

23

• seeInterestSpecificLinks:

• displayInterestSpecificLinks:

• getKeyword:

Use case name seeInterestSpecificLinks

Participating

Actors

Initiated by the user.

Communicates with the web browser extension.

Flow of events * The user clicks an interest specific links from the ticker.

* For each user action getFeedback is called to capture the user feedback.

* The link is replaced by new valid link.

Entry

condition

The user enters a link on the ticker.

Exit condition The user closes the browser.

Use case name displayInterestSpecificLinks

Participating

Actors

Initiated by the user.

Communicates with the web browser extension.

Flow of events * The browser starts his browsing session.

* The web browser extension calculates the interest rating from the data saved

from the previous browsing sessions.

* On the basis of this ranking, the extension displays the user specific links to

the user.

Entry

condition

The user enters a Query or URL in the web browser.

Exit condition The user manually enters a new query in the address bar.

Use case name getKeyword

Participating

Actors

Initiated by the web browser extension.

Flow of events * The user enters a query in the web browser and visits a page on the internet.

* The content of the visited web page is tagged to get the tags describing the text.

Entry

condition

The user enters the query or visits the web pages.

Exit condition The user closed the browser.

4.4. Data Flow Diagram

The Level-1 DFD of our system is depicted in Fig. 3. It shows how data

who is the central actor, initiating the processes in the system.

The processes initiated by a User are

• Submit Query- pertains to the User browsing the web. Once a User submits a query,

browser forwards it to a commercial search engine. Along with the query entered, the

results of the query are then forwarded to a Semantic Analysis Engine which classifies

the content of the result-set into rich semantic signatures. These signatures ar

in a local data-store. This collective information is then used to rank the areas of interests

of the User. Based on the interests analyzed, queries are generated to search the web for

additional links related to it. These links are then disp

browser.

24

1 DFD of our system is depicted in Fig. 3. It shows how data interacts with the User,

who is the central actor, initiating the processes in the system.

The processes initiated by a User are

pertains to the User browsing the web. Once a User submits a query,

browser forwards it to a commercial search engine. Along with the query entered, the

results of the query are then forwarded to a Semantic Analysis Engine which classifies

set into rich semantic signatures. These signatures ar

store. This collective information is then used to rank the areas of interests

of the User. Based on the interests analyzed, queries are generated to search the web for

additional links related to it. These links are then displayed to the User on the web

Figure 4.3 - Level 1 Data Flow Diagram

interacts with the User,

pertains to the User browsing the web. Once a User submits a query, the

browser forwards it to a commercial search engine. Along with the query entered, the

results of the query are then forwarded to a Semantic Analysis Engine which classifies

set into rich semantic signatures. These signatures are then stored

store. This collective information is then used to rank the areas of interests

of the User. Based on the interests analyzed, queries are generated to search the web for

layed to the User on the web-

25

• User Feedback –pertains to the User validating the results inferred by the system. As a

mechanism to ensure the relevance of the suggestions provided by the system, a User

visiting the suggested links is used as feedback to improve the quality of future

suggestions.

4.5. Decomposition Description

The System Architecture described in Section 4.2 can be further decomposed into subsystems as

discussed in the following sub-sections –

4.5.1. Learning Engine

The Learning Engine is responsible for analyzing the semantic properties of the page content

opened by the User. Semantic analysis here means understanding the topics of the page content.

Every webpage that’s opened would pass through this engine, resulting in the semantic

interpretation of the topics the page pertains to. In order to achieve this, a learning engine

typically shall comprise the following components –

• Classifier – A classifier is that component which makes a feature vector of the words on

the page and applies algorithms like Probabilistic Latent Semantic Analysis [3] in order

to obtain a set of word-tags which describe the topics the pages describe.

• Learner – Once the classifier creates the tags to pages, the Learner is responsible for

making use of ranking algorithms to grade the topics by their importance and relevance to

the User using the system.

Classification engines are commercially available for public usage. Web services like

textwise.com [2] provide for semantic tags given a body of text. The following sections discuss

the learner component of the Learning Engine.

4.5.2. Motivation

Every page that is browsed by a User can be characterized by the following features –

4.5.2.1. Semantic Words

These words describe the topics of the content of the given page. For example, the words

describing a page on the Shortest Path Algorithm can include the

set ��������	 ��
����, �	��� ����	�, �����	 �
����	�� . These words shall be obtained

from a third party commercial Semantic Engine (Refer to System Architecture), which would

return these set of words along with the weights describing the relative relevance of each of the

returned words with the page. Hence, the returned set would be of the following format –

26

��������	 ��
���� � 0.89

 �	��� ����	� � 0.79

 �����	 ��
���	� � 0.7 �

The weights described here are normalized on a scale of 0 to 1.

4.5.2.2. Time of Page Opened

This metric refers to the amount of time a particular page being viewed is kept open. The metric

has been chosen on the presumption that the longer a User goes through an opened page, the

better are the chances that the content of the page has interested her. Also, a short interval of

page opening may be interpreted as a User going through the content of the page and possibly

discarding the page. Moreover, the metric also needs to support noisy input possibilities. A page

opened for ten-odd minutes could be interpreted in two ways - the User being very much

interested in the content of the page and as a result, reads it for the full ten minutes or the User

reads the page for a while, leaves it open and gets involved in some other unrelated activity.

Considering such noisy inputs, the metric’s impact to the overall inference of the User’s interests

needs to be modeled considering the following scenarios –

The metric’s impact should be maximum for a time interval of 1 to 6 minutes, wherein, the

increase of each minute (starting from the first minute) should weigh non-linearly to the overall

inference. For e.g. The interest of a person who has opened a page for 4 minutes should be

weighed much more than if she has opened the page for 3 minutes. The increase in every minute

of page viewing confirms an interest in the topics pertaining to that page.

In order to account for the noisy input when pages are opened for too long, the metric’s impact

needs to taper off after a period of 15 minutes (say) as we would not want to wrongly heavily

weigh a page kept unintentionally open for a long time.

4.5.3. Graph based Page-Visitation Metric

Let #�	��$
, �% represent the semantic words which represent the topics associated with the

page that was opened. Here, #�	��$
, �% would represent the �&' word described as a topic of

the
&'page opened, assuming a vector of tagged words �(: �*+, *,, *-… */� describe the topics

for every given page.

Let a directed graph �$0, �% represent a graph which models the page visitation behavior of the

User. For every page
 visited by the User, a node 1(2 0 is created in � . The node is

characterized by the tag vector �(. A directed edge 13 4 15between any two nodes 13 and 15is

27

created if page 6 is opened on clicking a link on page �. We shall refer to such an action as

spawning, where a new page is spawned by an already opened parent page.

As an illustration, let graph �+denote the User’s page browsing in an arbitrary session-

Here, the vectors �7, 8, �� etc. denote the tag-vectors �(for nodes 1,2,3,4 respectively. Also,

node 2 is spawned by 1 and nodes 3, 4 are spawned by 2. It may so happen that the spawned

pages are similar in topics to the parent page. In the above graph, �7, 8, �� may represent

��������	 ��
����, �	��� ����	�, �����	 �
����	�� whereas �7, �, =� may

represent ��������	 ��
����, ������
� ���� ����	�, 0�� >������ . We may thus

conclude that the general interest of the User lies in the broad domain of Computer Science and

branches of into specifics such as Graph Theory and Game Theory.

Similarly, let �,denote the User’s page browsing in another session-

We notice that there are two nodes, namely 2 ��� 3 which are common to both browsing

sessions. From the algorithm, the cumulative graph at the end of both the browsing sessions

would be –

�7, 8, ��

�7, �, =�

�?, @, A� ��, 8, =�

1

3

2

4

�7, 8, ��

�7, �, =�

�?, @, A� ��, 8, =�

�=, 7, 8� 1

3

2

4

5

Figure 4.4– Page Browsing Graph – Session 1

Figure 4.5 – Page Browsing Graph – Session 2

Figure 4.6 – Cumulative Page Browsing

�=, 7, 8�

�7, �, =�

5

2

28

The metrics discussed in the Motivation Section can be applied on the above graph as follows –

Hidden Interest Metric

The cumulative page browsing graph of the browsed sessions reveals seemingly unexplored

relations between browsed pages. In Session 2, the User spawned Page 2 through Page 5 and

stopped there. However, in a previous session, the User had browsed on from Page 2 to Page 3.

We may thus extrapolate that in an arbitrary session, the User may have ended up at Page 3

having started from Page 5. Hence, the 54243 connection is the newly discovered browsing

pattern of the User.

Increased Interest Metric

In session 1, there exists a common keyword 7 between Pages 1 and 2. Since Page 2 is a child

spawned immediately by Page 1, we may apply the metric of increased interest by adding the

weight of word 7 relative to Page 1 (as calculated by the Semantic Engine) to an exaggerated

weight of word 7 relative to Page 2. The exaggeration may be presented by multiplying the

weight by a constant factor such as the depth of the page relative to the parent page. In this case,

the depth of Page 2 relative to Page 1 is 2.

Hence, the overall weight of word 7 would be –

#�
���B, CDEF3GG H #�
���B, I3JE + K $2 L#�
���B, I3JE ,%

However, in spite there being a word common between Page 1 and Page 3 (namely 8), the

multiplying factor of the depth (in this case 3) would not be incorporated as Page 3 is not

immediately spawned by Page 1. In the calculation of weights at Page 3, the metric shall be

made use of to calculate the weight of word = in the following manner –

#�
���M, CDEF3GG H #�
���M, I3JE N K O2 L#�
���M, I3JE ,P K $3 L#�
���M, I3JE -%

Time of Browsing Metric

The implementation framework provides for the calculation of the time spent by a User on an

opened browser window. This time, on normalizing to a scale of 1, may then be used to

accentuate the weights of the calculated words. The general rule of the metric would be to assign

a higher multiplying factor given a high amount of time spent on the page.

4.5.4. Algorithm

This section describes an approach to measure the importance and relevance of tagged words of

opened web pages and to make use of the abovementioned metrics in calculating this importance

measure.

29

QRSTUVWXY � Z[\]^\[_` U`\`a[b]` U[bc de W[ff`g Wdhi]j de kldmj`g n`oh[f`j

1. ����p��
1�#�
���� q r: �0�

2. �=�$��		���>���, ������@��*�	��%{

3. s�	 ���� ��
p� �s ��		���>����

4. ��*������@��*�	���� H ������@��*�	��$������@��*�	����, ��
p�. ���*�	�%;

5. ��*������@��*�	����. �����������$ %;

6. s�	 ���� ���*�	�
� ��*������@��*�	�����

7. w H ��	��p
x�$��
p�. �
�������$ %%;

8. � H ��	��p
x�O��
p�. �
��7�������$ %P;

9. ����p��
1�q���*�	�r KH w L � L ���*�	�. ����� L ��
p�. ���*�	�q���*�	�r. *�
���;

10. � �>� =yz

11. �=�$��
p�, ��*������@��*�	����%;

12. � �>� =yz

13. � �>� ={>��|y>

In the algorithm, ����p��
1�#�
���� is a vector which stores the final calculated weight of

every keyword in the list of topic-tags. It is initially set to 0 and is updated at each depth-level of

the page browsing graph. The graph is traversed depth-first, wherein each child is visited and the

weights at that child are calculated for its corresponding tag-vector. This continues till the leaf-

nodes of the graph are visited. The final results are reflected onto a data-store.

4.6. Data Design

4.6.1. Design Motivation

The following guidelines were kept in view while designing the database for the system-

• The database had to have as few tables as possible, as a large number of tables would

hinder the smooth working of the web browser.

• The focus of data storage would be the web browsing history of the user.

Considering these guidelines, one key table was decided upon to contain all key session details in

one table. This information is then made use of by querying to analyze the data based on the time

the page was opened, whether it was spawned from a page having common tags and other

metrics discussed in the previous section.

30

Once the browsing data has been analyzed and an appropriate ranking achieved, the words are

stored in a table which would then be accessed by the presentation logic in order to suggest

related links.

Implementation specific information such as the list of suggested links already visited by the

User are stored in another table.

4.6.2. Logical Design Elements

The various tables thus identified are-

i. Session_details

ii. Page_keywords

iii. Final_weights

iv. Dimensions

v. History

vi. Search_results

4.6.3. Entity-Relationship Diagram

The Entity-Relationship Diagram for the system can be described as follows -

Legend for the diagram-

Primary Key Not-null attribute

Foreign Key Null-allowed attribute

Relationship between tables

Figure 4.7– Entity Relationship Diagram for the System

31

4.6.4. Data Dictionary

i. Session_details

The master table containing basic session information about the user.

Col no Name Description Null? Notes

1 Page_no Unique number assigned to every

page opened

No Primary

Key, Auto

Increment

2 Page_url URL of the opened page No

3 Parent_url URL of the parent page spawning

the opened page

No

4 Page_open_time Time the page was opened No

5 Page_close_time Time the page was closed No

6 Active_start_time The timestamp at which the tab

opening the current page is returned

to

No

7 Active Current status of the tab that is

opened. It is 1 if the tab is active or

0 if it switched to another tab

No

8 Total_duration Reason for banning the user (if

applicable)

Yes

ii. Page_Keywords

This table maintains the tag-vector information for each of the web-pages opened.

Col no Name Description Null? Notes

1 Page_no Unique number assigned to every

page opened

No Foreign Key

2 Keyword Tag-vector for the page No

32

iii. Dimensions

This table maintains the list of all possible topic-tags a page can be assigned. This table is used to

interpret the words corresponding to the ID sent by the third party classification engine.

Col no Name Description Null? Notes

1 Keyword_id Unique ID assigned to every word

in the list of possible topics.

No Primary Key

2 Keyword Corresponding topic No

iv. Final Weights

The table is primarily accessed by the classification engine to enter the measure importance of a

given topic of web browsing. This is used to prioritize and rank the most relevant topic of

interest corresponding to the User.

Col no Name Description Null? Notes

1 Keyword_id Unique ID assigned to every word

in the list of possible topics

No Foreign Key

2 Weight Corresponding weight as calculated

by the Learning and Ranking

Engine. Refer to Section 4.5.1 for

details.

No

v. History

The table is accessed by the presentation engine in order to keep a track of all the suggested links

that have been visited by the User. It is accessed to show only the latest of links to the User.

Col no Name Description Null? Notes

1 Id The ID of the suggested link, as

shown in the presentation area.

No Primary Key

2 Date The date it was visited on No

vi. Search Results

This table is accessed by the Suggestion Engine in order to store intermediate search results

obtained by querying the ranked

Weights table and passed onto the search APIs.

Col no Name

1 Title

2 Desc

3 Url

4.7. Interaction Viewpoints

The User interacts with the system in a manner which does not affect her browsing.

created by a User is constantly captured and analyzed by the system.

maybe further explained from the diagram depict

was done referring to [7]

On entering a URL, the browser creates a session for that usage

passed onto the Learning Engine, which forwards the page to a commercial document tagging

Figure

33

This table is accessed by the Suggestion Engine in order to store intermediate search results

obtained by querying the ranked keywords. The highest ranked words are picked from the Final

the search APIs.

Description Null?

Title of the search result No

Summary of the result No

URL of the result No

The User interacts with the system in a manner which does not affect her browsing.

created by a User is constantly captured and analyzed by the system. The sequence of events

maybe further explained from the diagram depicted below. The design of the Sequence Diagrams

On entering a URL, the browser creates a session for that usage-activity. The control is then

passed onto the Learning Engine, which forwards the page to a commercial document tagging

Figure 4.8– Sequence Diagram for the System

This table is accessed by the Suggestion Engine in order to store intermediate search results

keywords. The highest ranked words are picked from the Final

 Notes

The User interacts with the system in a manner which does not affect her browsing. A session

The sequence of events

The design of the Sequence Diagrams

The control is then

passed onto the Learning Engine, which forwards the page to a commercial document tagging

34

software. The software returns the topics relevant to the page being viewed, which is then

handled by an intermediate script belonging to the system, which would then classify the most

relevant topic of interest of the User. This set of most important tags would then be used to query

the internet for related links to the topic.

35

5. Human Interface Design

5.1. Overview of User Interface

The User interface of our system is presented as an Add-On to the Mozilla Firefox web browser.

Firefox Add-On development supports component development through XUL [10], an XML

format language used to describe palette components like sidebars, buttons and other GUI

elements. The UI should be unobtrusive in nature, giving full control to the User to show/hide

the suggested links.

Considering the above non-functional requirements, the following design approach was

considered.

5.2. Design

5.2.1. Constraints

The following constraints hold for the presentation of the suggested links-

• The presented information should have the option of being visible or not in the main

browsing area and such visibility should be controlled by the User.

• The links displayed ought to be “fresh”, in the sense, should change over time and must

reflect any change in the browsing interests of the User.

• The displayed information should be presented such that any form of feedback to it in the

subsequent development of the software should be easily captured and implementable.

5.2.2. Features

The entire presentation logic has been provided through the available components in the Mozilla

Firefox Extension development kit. It has been provided as a sidebar the presence of which can

be toggled through the activation/de-activation of a button available on the status-bar of the web

browser. Some of the salient features that have been provided are as follows –

5.2.2.1. Dynamic Tree Structured Sidebar Display

This facility provides for the dynamic structuring of results displayed in a sidebar on the web

browser. The results are shown as a list of titles. On clicking any title, a tab opens consisting of

the URL to the link along with the description of the topic. Refer to Screenshot 1 and 2 in the

following section.

5.2.2.2. Visibility Control of Sidebar

The sidebar opens on the click of a button, placed next to the address bar of the browser. It

toggles shut on clicking it again. Refer to Screenshot 3 in the following section.

36

5.2.2.3. Options against Each Suggested Link

Each item suggested in the list has the following options to be operated on –

Open, Open in New Tab, Open all in Tabs, Mark as Read, Copy Title, Copy Link and Options.

This is displayed as a Menu-list on right-clicking any of the items in the list. The Options option

provides some configurable parameters for the Users. Refer to Screenshot 4 in the following

section.

5.3. Screenshots

The following are the screenshots of the Suggestions4You system.

5.3.1. Visibility Control Button

5.3.2. List of suggested links

37

5.3.3. Dedicated tab for each link

5.3.4. Links When Marked as Read

5.3.5. Options Pane to Set Configurable Parameters

38

6. Project Plan

6.1. Proposed Plan for the Execution of Project

The Gantt chart below represents the split-up of our work schedule of our project. Following the

design phase, the major part of our work was planned to be spent on implementation, as our team

was inexperienced in the domain of the problem statement.

Activity 14

Jan

28

Jan

11

Feb

25

Feb

11

Mar

25

Mar

8

Apr

15

Apr

22

Apr

29

Apr

6

May

13

May

20

May

27

May

Project

Preparations

Feasibility

Study

Requirement

analysis

System Design

Algorithm

Design

Add-On

Implementation

Algorithm

Implementation

Testing

Documentation

Figure 6.1– Gantt Chart for Proposed Plan

39

6.2. Realized Plan for the Execution of the Project

The Gantt diagram below represents the actual split-up of time spent in execution. Most of the

split-up in the proposed plan was followed, barring the extra weeks spent in the continuous

revision and development of the Add-on Implementation related issues.

Activity 14

Jan

28

Jan

11

Feb

25

Feb

11

Mar

25

Mar

8

Apr

15

Apr

22

Apr

29

Apr

6

May

13

May

20

May

27

May

Project

Preparations

Feasibility

Study

Requirement

analysis

System Design

Algorithm

Design

Add-On

Implementation

Algorithm

Implementation

Testing

Documentation

Figure 6.2– Gantt Chart for Realized Plan

40

7. Management Plan

7.1. Team Introduction

Our team consists of three members, none of us having any previous experience with the design

and implementation of Browser Extensions. All of us had a working knowledge of JavaScript

and database management systems.

7.2. Work Division

In our group, we assigned tasks and responsibilities as follows:

1) Kunal Sangwan – responsible for the design of the Ranking Algorithm and design and

implementation of the Learning Engine.

2) Shashank Srikant – responsible for the design of the Ranking Algorithm and the design

and implementation of the User-Interface Engine.

3) Sohil Arora – responsible for the design and implementation of the Semantic Analyzer

and the Suggestion Engine.

Each was responsible for documenting and testing modules developed by him.

41

8. Development Cycle

The development strategy used was basically a combination of both the agile software

development model and the iterative and incremental software development model.

The whole system was complex and included many functional parts to perform together to

provide the system’s required functionality. A lot of the functionality is part of the back-end and

completely invisible to the user: intercepting page loads, generating the feature vector from each

page, calculating and assigning weights to each topic using the developed algorithm and

supporting parameters and the generation of suggestions for the user. Additionally, there are the

front-end functionalities relating to display and manipulation of suggestions. Therefore, the

functionalities were developed through various iterations, each iteration adding a new

functionality to the system.

A component based development approach was employed and the project was broken down into

smaller components, wherein each component provided exclusive functionality or supported

other components to help them deliver their functionality. These components were developed as

a part of various iterations.

The team was small, comprising of three members only. Each team member was, as a result,

responsible for developing a complete component and following it up with testing and

integrating the functionality with the overall system.

 Iteration 3

Semantic Analyzer and Database deployment

Learning Engine

Suggestion Engine

User-Interface Engine

Iteration 1

Iteration 2

Iteration 4

Figure 8.1– Development Cycle of the Project

42

As a part of the first iteration, the page intercepting mechanism was implemented as was the

mechanism for extracting topics from the intercepting page, thus completing the Semantic

Analyzer. Also, an initial instance of the supporting database was put into place. This database

instance witnessed many changes during other iterations, based on project requirements realized.

The major components developed by distinguishable iterations are mentioned in Figure 8.1.

43

9. Implementation

9.1. The XPI

A Mozilla Firefox Extension is packaged as an XPI (Cross-Platform Installer). They are simply

compressed ZIP files renamed to the XPI extension. The basic structure of an XPI is as follows:

9.1.1. XPI Contents

sampleextension1.xpi

o install.rdf information needed to install add-on

o chrome.manifest tells Firefox where to look for chrome files

o chrome set of user elements outside of a window’s content area

� content user interface and script files

• browseroverlay.xul

• browseroverlay.js

� locale the text used in the extension

• en-us

o browseroverlay.dtd

o browseroverlay.properties

� skin files defining the look and feel of the UI

o browseroverlay.css

Each file in the XPI serves a specific purpose:

• install.rdf: Contains information needed to install the add-on.

• chrome.manifest: Tells Mozilla Firefox where to look for chrome files.

• chrome: The chrome folder contains the set of user elements outside of a window’s

content area.

• content: The content folder contains user interface and script files.

• browseroverlay.xul: The basic user interface file, this provides a front-end for the user

to view.

• browseroverlay.js: A JavaScript file, this provides all the functionality of the extension.

• locale: The locale folder contains language-specific content that is displayed in the

extension.

44

• skin: The skin folder contains CSS files that define the look and feel of the user interface.

9.2. Languages Used

Mozilla Firefox Extensions are developed using a standard set of languages:

i. XUL:

This is an XML user interface markup language developed by the Mozilla project. Relying on

other web technologies such as CSS and JavaScript, XUL is used for the design of the user

interfaces on Mozilla applications and their extensions. In Suggestions4You, XUL elements

Sidebar and Tree Hierarchy have been used for displaying suggestions to the user.

ii. JavaScript:

An object-oriented scripting language, JavaScript is used for all the functionality that an

extension performs. In Suggestions4You, JavaScript is used for implementing the Semantic

Analyzer and the Suggestion Engine.

iii. CSS (Cascading Style Sheets):

CSS is a style sheet language used to describe the look and formatting of web content. All data

displayed is formatted using CSS.

iv. SQL:

Mozilla Firefox supports a Database Engine called SQLite. All the data being stored and

retrieved by the Suggestions4You is managed using SQL operations on SQLite.

v. Java:

Java has been used for the development of the Learning Engine. It has been chosen for this

purpose because of the platform independency it offers.

9.3. APIs used

Suggestions4You uses two Application Program Interfaces for its working:

9.3.1. Textwise

The Textwise API is used by the Semantic Analyzer to obtain the topics relating to every page

visited by a user.

The API, when called with the URL of a page as a parameter, processes the content of the page

and returns as an XML response which can then be parsed to obtain weight and index pairs. The

index returned is mapped to the topics using a configuration file.

45

9.3.2. Bing

The Bing API [11] is used by the Suggestion Engine to obtain search results for custom-

generated search queries. These search results are then used as suggestions for the user.

The API, when called with a search query as a parameter, returns the search results for that query

in an XML format, which can then be parsed to obtain search results in any desired format.

9.4. Implementation Specifics

The following article discusses some of the implementation concerning each of the major

components of our system.

9.4.1. Semantic Analyzer

The Semantic Analyzer is being used to process every page visited by the user and extract topics

from it. It has been developed using JavaScript and uses a 3
rd

 party API call to Textwise [2].

The component intercepts every page when it is loaded and sends its URL as a parameter in the

Textwise API call, which in turn returns an XML response. This response is then parsed to

obtain (weight, index) pairs.

Also, this component creates the parameters needed by the Learning Engine for ranking topics. It

calculates the duration for which a page, and thus its topics, was active in the browser. Also, it

keeps record of the parent of every page so that parent-child relationships between pages may be

established.

All the data generated by the Semantic Analyzer is stored in the SQLite Database for use by the

Learning Engine.

9.4.2. Leaning Engine

The Learning Engine is used to rank topics, given a set of supporting parameters. It has been

developed using Java.

9.4.3. Suggestion Engine

The Suggestion Engine uses the final ranks generated by the Learning Engine and creates

suggestions to be presented to the user. It has been developed in JavaScript and uses a 3
rd

 party

API call to Bing.

The component creates custom search queries for higher ranked topics and sends them as

parameters in the Bing API call [11], which in turn returns an XML response. This response is

then parsed to obtain the search results in clear text. These search results are then written onto

the database for later use by the User-Interface Engine.

46

9.4.4. User-Interface Engine

The User-Interface Engine uses the search results generated by the Suggestion Engine and

presents them to the user as suggestions. It has been developed using XUL and JavaScript.

The component uses XUL to create a handy sidebar which is displayed when a button on the

Navigation Toolbar of Mozilla Firefox is clicked. Suggestions read by the user are hidden from

the user’s view, though he can choose to view them as well, and replaced by fresh suggestions.

47

10. Test Plan

10.1. Capturing session details

Test Case Expected Output Input Result

New link is clicked on a

web page and the parent

of the web page is

captured.

The url of the web page

is stored in the database

with the parent_url set

to the current web page.

url on the page

www.computerworld.com

is clicked.

The url is inserted in the

table session_details

with parent_url set to

the parent web page.

If New url is entered in

the address bar then the

database should be

updated accordingly and

the parent url is set to

null.

The url of the web page

is stored in the database

with parent_url set to

null.

url

www.computerworld.com

is entered in the address

bar.

The session_details

table contains a new

entry that corresponds to

the url entered with

parent_url set to null.

Whenever a new url is

visited the tags

corresponding to the

page visited are fetched

from the semantic

engine.

The tags corresponding

to the url visited are

fetched properly and

inserted into the

database.

url

www.computerworld.com

is entered in the address

bar.

The tags are fetched

with the help of the api

and inserted into the

table page_keywords.

The time spent on a

particular web page is

captured properly.

The page_open_time

and the page_close_time

for the currently opened

page are updated

properly.

url www.wikipedia.org is

visited and 300 secs were

spent on the page.

The page_open_time is

updated at the time the

page was visited and the

page_close_time set to

null. When the page is

closed the

page_close_time is

updated to the current

time.

48

10.2. Sidebar

Test Case Expected Output Input Result

Clicking the button on

the address bar toggles

the sidebar.

The sidebar is toggled

on clicking the sidebar.

The button on the

address bar is pressed.

The sidebar state is

toggled when the button

is clicked.

The “All” option is

pressed, the sidebar

displays all the read and

unread links in the

sidebar.

The read links are

displayed in faded font

and the unread links are

displayed in solid color

font on clicking the

“All” button.

“All” button is clicked.

The sidebar shows all

the read and the unread

links in respective

colors.

In offline mode, double

clicking any of the links

opens up the description

of the link in the content

pane.

The description is

opened in the new pane

and the link should not

be marked as read.

In offline mode, click

one of the unread links.

The description is

displayed in the content

pane.

The color of the link

fades making it as read

link.

In online mode, double

click on an unread link

opens up the link into

the content pane.

The link is displayed in

the content pane and the

link is marked as read.

In online mode, click

one of the unread links.

The link is displayed in

the content pane and the

link is marked as read

link.

On marking a link read

none of the new link

added to the sidebar are

read.

The new links added are

not already in the list.

Keep marking links as

read until the number of

links in the sidebar

starts decreasing.

The links are getting

repeated.

On choosing the option

“open all in tabs” and

large number of tabs has

to opened the browser

prompts with a warning

message.

The browser prompts

with a warning message

in case number of tabs

to opened are large.

There are around 20

unread links, and “open

all in tab option is

chosen’.

The browser prompts

with the appropriate

message regarding the

Choosing “mark

suggestion as read”

option marks all the

links in the sidebar as

read.

The unread links in the

sidebar gets converted

to the read links.

Option “mark

suggestion as read” is

chosen.

The unread links gets

faded to depict there

read status.

When the number of The read links should The “maxReadCount” When the browser is

49

link in the sidebar goes

above maxReadCount

preference then at next

startup the number of

such links should be

removed.

get removed at the

startup if the read likns

count is more than the

preference.

preference was set to 10

and the number of

unread links is 12. In

this state the browser

was restarted.

restarted the number of

unread links are 10 and

the read links from the

top are deleted.

When the number of

unread links in the

sidebar is less than the

“suggestionsCount”

saved in the preference,

new links will be added

to the list.

The total number of

unread links is equal to

the “suggestionsCount”

preference.

Marked a suggestion or

multiple suggestions as

read.

The new suggestions are

inserted into the sidebar.

10.3. Testing the algorithm

Test Case Expected Output Input Result

The program is

executing at fixed

intervals.

The program is

executed at the regular

intervals and the new

final weights are

inserted into the

database.

Wait for the time

interval set.

The program is

executing.

The final_weights table

is filled with the new

weights.

50

11. Limitations and Future Scope

The project has immense scope for improvement and further development. Some of the major

limitations of our project are –

• Browser Dependence: Given the current state of development facilities provided by

various commercial web-browsers, we found that Mozilla Firefox has the best online

community to support such an extension. As a result, all the work provided here is

supported only on version of Mozilla Firefox.

• Semantic Engine Dependence: As we have not implemented the semantic analysis engine

ourselves and depend on a commercial engine for our results, the entire tagging and the

weights of the topics corresponding to a given page are calculated on the basis of the

interpretation of this commercial engine. No modification to the algorithms can be

performed from our side in order to better suit our problem domain.

• Effective Query Formation: The topics of interest realized can be organized and

combined to form possibly effective queries. The current implementation witnesses a

simple word/combination of words-based querying. This is scope for research in the field

of language processing and string query formation.

The current status of our project qualifies to make it a prototype for such the suggestion system

we initially conceived and proposed. If the above mentioned limitations are overcome, we may

consider the following extensions to this project –

• An interactive feedback system: The User may be given a choice to provide a feedback

on the nature of links being suggested to her. In the case that the suggestion engine has

wrongly inferred topics of interest, this form of a supervised learning feature should help

correct its inference and re-suggest links. The current implementation has been provided

keeping in mind such a possible extension with enough support for its easy integration.

• Mobile-agent based engine: This shall involve enhancing a local classifier database by

crawling through similar add-on data-stores in a network.

• Multiple browser integration: Based on the extension services provided by other web-

browsers, we may develop the same service for them.

51

12. References

1. Weka, A Collection of machine learning algorithms for solving data mining problems

implemented in Java and open sourced under the GPL, www.cs.waikato.ac.nz/ml/weka/

2. TextWise, is a Web service that automatically extracts tags from a piece of text. The tags

are chosen based on both statistical and linguistic analysis of the original text,

http://textwise.com/api

3. Thomas Hofmann, Probabilistic Latent Semantic Indexing, Proceedings of the Twenty-

Second Annual International SIGIR Conference on Research and Development

in Information Retrieval (SIGIR-99), 1999

4. IEEE 830-1998, IEEE defined standards for the Software Requirements Specifications of

a software product, http://standards.ieee.org/findstds/standard/830-1998.html, Last visited

on 20 November 2010.

5. IEEE 1016-2009, IEEE defined standards for the Design Documentation of a software

product, http://standards.ieee.org/findstds/standard/1016-2009.html, Last visited on 20

November 2010.

6. StumbleUpon, a discovery engine (a form of web search engine) that finds and

recommends web content to its users. htrtp://www.stumbleupon.com/. Last visited on 20

April 2011

7. Software Ideas Modeler, an online, open-source, free CASE Tool, http://

www.softwareideas.net/, Last visited on 20 November 2010.

8. Microsoft Visual Studio 2010, Student Edition, A tool for generating Use-Cases for

software systems, https://www.dreamspark.com/, Last visited on 1 November, 2010.

9. MySQL Workbench, A tool for generating E-R Diagrams of database schema,

http://dev.mysql.com/downloads/workbench/, Last visited on 1 November, 2010.

10. XUL, XML User Interface Language, An introduction to XUL,

https://developer.mozilla.org/en/XUL, Last visited on 20 May, 2011.

11. Bing API, An API to the Microsoft Bing Search Engine which provides search results

over data formats like XML and JSON, http://www.bing.com/developers

