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Abstract 

 

Over the recent years, there has been an extensive development in the field of 

Bioinformatics. A couple amongst the various works done under this field includes 

Genome based phylogenetic studies. Genome based phylogenetic studies include the 

process of matching mitochondrial DNA of different species to establish their 

phylogenetic relation. One novel algorithm in order to achieve this is the Extended 

Burrows Wheeler Transform. 

The Extended Burrows Wheeler Transform is a new development in the field of 

Computer Science which discusses a good strategy to compress multiple strings 

efficiently. However, the transform operations are compute-intensive due to the sheer 

size of the mitochondrial genomes used as input data. All this necessitates an 

optimization of such algorithms by parallelization or other means. 

Our research looks at this particular application in detail, exploring the various aspects of 

the transformation which could help efficiently parallelize the operations in order to 

perform them quickly. The parallelization has been performed on Nvidia CUDA. CUDA 

is a parallel programming architecture which acts as a middle-ware compute engine 

which exposes the computational power of the NVIDIA Graphics Processing Units to 

software developers through industry standard programming. 

The work done here analyses the working of EBWT on CUDA and describes an efficient 

implementation model. The implementation model described here manages a 5X speed 

up on some of the most compute-intensive parts of the operation. This speed-up proves 

credibility to the fact that this transformation technique may indeed help in the real-time 

realization of comparing genomic sequences. Given this credibility, new applications 

based on EBWT are discussed as future scope of the performed work. 
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 Chapter 1: Introduction 

 
 

1.1 Phylogenetic Analysis 

 
Every living organism is made up of DNA and proteins as constituents of its cells which 

form the organism’s basic building block. In addition to these molecular constituents 

defining the organism’s outward appearance and biological functions, they also help 

biologists ascertain the related-ness or non- related-ness of two organisms. It was 

observed that organisms of different species that closely relate show a great deal of 

similarity in the molecular structure or sequence of chemical components of these 

biological constituents of the cell. 

 

One such cell constituent is the mitochondrial DNA (mtDNA) which undergoes 

mutations over generations. The mtDNA is passed only from the maternal side, with no 

change except mutation. Such a comparative analysis of mtDNA help biologists to 

arrange various species in a tree forma with related species represented as closer 

branches. The simplistic means of such an analysis would be a simple string comparison 

between the two DNA sequences. Such algorithms generally depend upon the product of 

length of both sequences for their runtime. 

 

However, there exists a novel way of having multiple strings compared for similarity, 

which is an application of the Extended Burrows Wheeler Transform (EBWT). This 

would take less time than having all combination of simple sequence comparison 

between each pair of sequences. The EBWT however still requires long processing times 

due to the sheer sizes of mtDNA data. This necessitates the reduction in runtime of the 

EBWT algorithm. 

 

1.2 Multi-Core Architectures 
 
Moore’s Law had predicted that the chip manufacturing technology would be able to 

double the transistors on chip roughly every two years, which has stood good so far. 

Microprocessor technology has been using this prediction to improve its frequency by 

various techniques. However, in the recent past, micro-processors have hit a frequency 

wall, and not been able to take advantage of the predicted exponential growth. The 

outcome of this wall is the emergence of multi-core processors, which offer the 

performance benefits of multi-processors on a single chip. The presence of such 

architectures as common desktop processors has made it possible for hitherto time-

consuming algorithms to be involved on simple desktop machines. 

 



7 

 

Another emerging trend has been the use of Graphics Processing Units (GPUs) for 

general purpose computing. The GPUs model themselves as multi-core processing and 

expect programs to take advantage of them as raw parallel number-crunchers. The multi-

core processors allow programs to leverage their computing power by various means like 

independent threads per core or allow users to manipulate efficient data flow between 

cores, or provide a layer of software which manages the scalability of the cores. With the 

future micro-processors the trend is likely to increase the number of cores to increase 

computation power. Hence, it becomes important for algorithms to be parallelized to run 

on these next-generation micro-processors. 

 

Thus, multi-core processors provide the perfect means of increasing the runtimes of our 

analysis and implementation of the EBWT applied to sequence comparisons. 

 

1.3 Problem Statement 

 
In our work, algorithms used in the EBWT were studied and profiled for bottlenecks. 

Since the problem portion of the algorithm caused its runtime to go into hours, it was 

required to find alternatives to be able to speed up the algorithm. This could include 

parallelization and modifying the algorithms used.  

 

The objective was to parallelize the algorithms and find out if there was any improvement 

in the run-time performance. 

 

1.4 Organization of the Report 

 
This report is organized as follows: 

 

Chapter 2 covers a detailed explanation of the CUDA programming environment which 

was used in this dissertation. 

 

Chapter 3 introduces the concepts of the Extended Burrows Wheeler Tranform. It then 

discusses the implementation on CUDA and the issues faced therein. The results are also 

discussed and analyzed. 

 

Chapter 5 concludes this report and ponders over work which might follow the results 

obtained. 
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Chapter 2: Parallel Processing Architectures 

 
 

2.1 GPU 

A graphics processing unit or GPU (also occasionally called visual processing unit or 

VPU) is a specialized processor that offloads 3D graphics rendering from the 

microprocessor. It is used in embedded systems, mobile phones, personal computers, 

workstations, and game consoles. Modern GPUs are very efficient at manipulating 

computer graphics, and their highly parallel structure makes them more effective than 

general-purpose CPUs for a range of complex algorithms. In a personal computer, a GPU 

can be present on a video card, or it can be on the motherboard. More than 90% of new 

desktop and notebook computers have integrated GPUs, which are usually far less 

powerful than those on a video card. 

GPUs are massively multi-threaded many-core chips. They are mainly designed to handle 

billions of pixels, millions of polygons per second. The contain thousands of processor 

cores compared to the traditional CPU which contains 2, 4 or 8 cores. Scalability in these 

processors is very high and there exist hundreds of scalable processors. In general, they 

are able to run tens of thousands of concurrent threads. Some of the best computing times 

clocked on modern-day GPUs are close to 1 T Floating point Operations per Second 

(FLOPS). They implement fine grained data-parallel computation and are able to 

implement algorithms developed for the exotic computers. 

 

2.2 CUDA[1][2] 

NVIDIA is best known for motherboard chip sets as well as for outstanding graphics 

processors that have become popular as the basis for graphics cards. In the quest for 

maximum speed, NVIDIA's GPUs (Graphics Processing Units) have evolved far beyond 

single processors. Modern NVIDIA GPUs are not single processors but rather are parallel 

supercomputers on a chip that consist of very many, very fast processors. Contemporary 

NVIDIA GPUs range from 16 to 256 stream processors per card, delivering incredibly 

powerful computing bandwidth. The card shown above, for example, provides 256 

stream processors. 

Although the market impetus behind the creation of such supercomputers on a plug-in 

board has been the computational demands of the PC gaming market, such "graphics" 

boards have become so powerful that the scientific computing community has begun 



9 

 

using them for general purpose computing. It turns out that many mathematical 

computations, such as matrix multiplication and transposition, which are required for 

complex visual and physics simulations in games are also exactly the same computations 

that must be performed in a wide variety of scientific computing applications, including 

GIS. 

NVIDIA has supported this trend by releasing the CUDA™ (Compute Unified Device 

Architecture) interface library to allow applications developers to write code that can be 

uploaded into an NVIDIA-based card for execution by NVIDIA's massively parallel 

GPUs. This allows applications developers to plug in a 500 gigaflop, 256-processor, 

NVIDIA-based card and upload applications to run within the NVIDIA GPU at far 

greater speed than possible on even the fastest general purpose CPU on the motherboard. 

For a mere few hundred dollars we can use CUDA to achieve true, supercomputer 

performance on the desktop. 

CUDA offers such tremendous performance gains that many functions within Manifold 

have been re-engineered to execute as parallel processes within CUDA if such a card is 

available. If we have a CUDA-capable NVIDIA graphics card installed in our system, 

Manifold can take advantage of the phenomenal power of massively parallel NVIDIA 

stream processors to execute many tasks at much greater speed. 

The following section discusses some key features in the design and architecture of the 

NVIDIA CUDA which makes it a much better computing platform than the rest of the 

General Purpose GPUs available. 

2.3 General Architecture 

CUDA is a parallel programming model and software environment that leverages the 

computational horsepower of GPU (graphics processing unit) for non-graphics 

computing. CUDA technology was developed with several design goals in mind:   

 

• CUDA is essentially a small set of extensions to the C programming language that 

enable a straightforward implementation of parallel algorithms. With CUDA, 

programmers can focus on the design of parallel algorithms rather than spending 

time on the implementation.   

 

• CUDA also supports heterogeneous computation where applications use both the 

CPU and GPU. Serial portions of applications are run on the CPU, and parallel 
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portions are offloaded to the GPU. As such, CUDA can be incrementally applied 

to existing C applications. The CPU and GPU are treated as separate devices that 

have their own memory spaces. This configuration also allows simultaneous 

computation on both the CPU and GPU without contention for memory resources. 

 

 CUDA -capable GPUs have hundreds of cores that can collectively run thousands of 

computing threads. Each core has shared resources, including registers and memory. The 

on-chip shared memory allows parallel tasks running on these cores to share data without 

sending it over the system memory bus. 

 

2.4 CUDA Thread Organization 

 

Since all threads in a grid execute the same kernel function, they rely on unique 

coordinates to distinguish themselves from each other and to identify the appropriate 

portion of the data to process. These threads are organized into a two-level hierarchy 

using unique coordinates, called blockId 

and threadId, assigned to them by the 

CUDA runtime system. The blockId and 

threadId appear as built-in variables that 

are initialized by the run-time system and 

can be accessed within the kernel 

functions. When a thread executes the 

kernel function, references to the blockId 

and threadId variables return the 

appropriate values that form coordinates 

of the thread.  

         Fig 2.1- Thread Organization 

 

At the top level of the hierarchy, a grid is organized as a two dimensional array of blocks. 

The number of blocks in each dimension is specified by the first special parameter given 

at the kernel launch. For the purpose of our discussions, we will refer to the special 

parameters that specify the number of blocks in each dimension as a struct variable 

gridDim, with gridDim.x specifying the number of blocks in the x dimension and 

gridDim.y the y dimension. The values of gridDim.x and gridDim.y can be anywhere 

between 1 and 65,536. The values of gridDim.x and gridDim.y can be supplied by run-

time variables at kernel launch time. Once a kernel is launched, its dimensions cannot 

change in the current CUDA run-time implementation. All threads in a block share the 
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same blockId values. The blockId.x value ranges between 0 and gridDim.x-1 and the 

blockId.y value between 0 and gridDim.y-1. 

2.5 Execution Model 

 

CUDA is made up of several clusters of what Nvidia calls Texture Processor Clusters. An 

8800GTX, for example, has eight clusters, 

an 8800GTS six, and so on. Each cluster, in 

fact, is made up of a texture unit and two 

streaming multiprocessors.  

 

These processors consist of a front end that 

reads/decodes and launches instructions and 

a backend made up of a group of eight 

calculating units and two SFUs (Super 

Function Units) where the instructions are 

executed in SIMD fashion: The same 

instruction is applied to all the threads in 

the warp.      

        Figure 2. 2: Architecture Overview 

 

Nvidia calls this mode of execution SIMT (for single instruction multiple threads). It’s 

important to point out that the backend operates at double the frequency of the front end. 

In practice, then, the part that executes the instructions appears to be twice as “wide” as it 

actually is (that is, as a 16-way SIMD unit instead of an 8-way one).     

        

 

The streaming multiprocessors’ operating mode is as follows:  

 

At each cycle, a warp ready for execution is selected by the front end, which launches 

execution of an instruction. To apply the instruction to all 32 threads in the warp, the 

backend will take four cycles, but since it operates at double the frequency of the front 

end, from its point of view only two cycles will be executed. So, to avoid having the front 

end remain unused for one cycle and to maximize the use of the hardware, the ideal is to 

alternate types of instructions every cycle – a classic instruction for one cycle and an SFU 

instruction for the other. 
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Each multiprocessor also has certain amount of resources that should be understood in 

order to make the best use of them. They have a small memory area called ‘Shared 

Memory’ with a size of 16 KB per multiprocessor. This is not a cache memory – the 

programmer has a free hand in its management. As such, it’s like the Local Store of the 

SPUs on Cell processors. This detail is particularly interesting, and demonstrates the fact 

that CUDA is indeed a set of software and hardware technologies. This memory area is 

not used for pixel shaders. 

2.6 Memory Layout 

This memory area provides a way for threads in the same block to communicate. It’s 

important to stress the restriction: all the threads 

in a given block are guaranteed to be executed by 

the same multiprocessor. Conversely, the 

assignment of blocks to the different 

multiprocessors is completely undefined, 

meaning that two threads from different blocks 

can’t communicate during their execution. That 

means that using this memory is complicated. 

But it can also be worthwhile, because except for 

cases where several threads try to access the 

same memory bank, causing a conflict; the rest of 

the time, access to shared memory is as fast as 

access to the registers. 

The shared memory is not the only memory the 

multiprocessors can access. Obviously they can 

use the video memory, but it has lower 

bandwidth and higher latency. Consequently, to 

limit too-frequent access to this memory, Nvidia 

has also provided its multiprocessors with a      Figure 2.3: Memory Layout 

cache (approximately 8 KB per multiprocessor) for access to constants and textures. 

The multiprocessors also have 8,192 registers that are shared among all the threads of all 

the blocks active on that multiprocessor. The number of active blocks per multiprocessor 

can’t exceed eight, and the number of active warps are limited to 24 (768 threads). So, an 

8800GTX can have up to 12,288 threads being processed at a given instant. It’s worth 
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mentioning all these limits because it helps in dimensioning the algorithm as a function of 

the available resources.  

Optimizing a CUDA program, then, essentially consists of striking the optimum balance 

between the number of blocks and their size – more threads per block will be useful in 

masking the latency of the memory operations, but at the same time the number of 

registers available per thread is reduced. What’s more, a block of 512 threads would be 

particularly inefficient, since only one block might be active on a multiprocessor, 

potentially wasting 256 threads. So, Nvidia advises using blocks of 128 to 256 threads, 

which offers the best compromise between masking latency and the number of registers 

needed for most kernels. 

2.7 Software Model 

From a software point of view, CUDA consists of a set of extensions to the C language, 

and a few specific API calls. Among the extensions 

are type qualifiers that apply to functions and 

variables. The keyword to remember here is 

__global__, which when prefixed to a function 

indicates that the latter is a kernel – that is, a 

function that will be called by the CPU and executed 

by the GPU. The __device__ keyword designates a 

function that will be executed by the GPU (which 

CUDA refers to as the “device”) but can only be 

called from the GPU (in other words, from another 

__device__ function or from a __global__ function). 

Finally, the __host__ keyword is optional, and 

designates a function that’s called by the CPU   Figure 2.4: Software Hierarchy  

and executed by the CPU – in other words, a traditional function.         

There are a few restrictions associated with __device__ and __global__ functions: They 

can’t be recursive (that is, they can’t call themselves) and they can’t have a variable 

number of arguments. Finally, regarding __device__ functions resident in the GPU’s 

memory space, logically enough it’s impossible to obtain their address. Variables also 

have new qualifiers that allow control of the memory area where they’ll be stored. A 

variable preceded by the keyword __shared__ indicates that it will be stored in the 

streaming multiprocessors’ shared memory. The way a __global__ function is called is 
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also a little different. That’s because the execution configuration has to be defined at the 

time of the call – more concretely, the size of the grid to which the kernel is applied and 

the size of each block. Take the example of a kernel with the following signature: 

__global__ void Func(float* parameter); 

which will be called as follows: 

Func<<< Dg, Db >>>(parameter); 

where Dg is the grid dimension and Db the dimension of a block. These two variables are 

of a new vector type introduced by CUDA. 

The CUDA API essentially comprises functions for memory manipulation in VRAM: 

cudaMalloc() to allocate memory, cudaFree() to free it and cudaMemcpy() to copy data 

between RAM and VRAM and vice-versa. 
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Chapter 3: An Extension to the Burrows Wheeler Transform 

 
 

3.1 Introduction to the Burrows Wheeler Transform 
 

The Burrows Wheeler’s transform[3] is a block-sorting, lossless data compression 

algorithm, which is used in applications such as bzip2. It was developed by Michael 

Burrows and David Wheeler.  A variation of this algorithm was developed by Mantici et 

al.[4]5] which extended the concept to a multi-set of words, unlike the original algorithm 

which worked on a single block of text. A key realization by Mantici et al. was the 

applicability of their extended algorithm to the domain of bio-informatics, namely the 

matching of genomic data of species to establish their Phylogenetic proximity or non-

relatedness. 

 

3.2 Burrows Wheeler Transform 

 
The Burrows-Wheeler transform was given jointly by Burrows and Wheeler in 1994. It is 

also known by another name called block-sorting. The very basic job of Burrows wheeler 

transform is to sorts the block of characters, according to a lexical ordering of their 

following context. This process can be thought as a sorting a matrix containing all cyclic 

rotations of the string. An example matrix shown in Figure 3.1 is constructed for the 

input string mississippi.  

 

Each row is consists of one of the eleven rotations of the input, and then each rows have 

been sorted lexicographically. The first column   of this matrix contains the first 

characters of the each rotated string, and the last column  denotes the permuted 

characters of the string that form the output of the . 

 

 It is also necessary to transmit the position of the original string in the sorted matrix is 

shown in fifth row of Figure 1.  Therefore, the complete  output for the string 

 is the pair , as it is find that only a few characters are likely to 

appear in any given context, that why move-to-front transform encoding scheme is 

consider as an ideal scheme for encoding, which replaces the recently seen symbols with 

shorter codes. 

The random nature of the permuted text, make it almost impossible to recover the 

original text without any other information, but on the hand a reverse transformation can 

be performed easily on the given permuted string L, the first character index, and the 

sorted matrix F, which can be obtained from the permuted string is in  time.  

 

This is infer from the two important considerations: first one is that, the sorted matrix is 

constructed by performing cyclic rotations, so that each character in L is immediately 
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followed by the corresponding character in F, and secondly, that the instances of each 

distinct character appear in the same order in both arrays F and L.  In order to develop a 

deep understanding an   example given in which the third occurrence of the letter  in L 

corresponds to the third occurrence of  in F, and so on. In this example, the first 

character is  at position 5 of F, and that this must correspond to  at position 4 of L, 

since there is only one in the text.  

 

The next character is  at position 4 of F, since characters in F immediately follow the 

characters at the same index in L. This is the fourth   in F, and so it corresponds to the 

fourth  in L at position 11, which in turn must be followed by an s. Continuing in this 

way, it is possible to decode the whole string in .[6] 

 

If it is not necessary to decode the entire string at once, a transform array W can be 

computed in linear time with a single pass through the L and F arrays, such that 

 

 
 

Where , and  is the index of the original text in the 

sorted matrix. By traversing  with , we have a means of decoding arbitrary substrings 

of the text. 

 

. 
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3.3 Extended Burrows Wheeler Transform[7] 
 

Mantici et al. produced a variation in of the Burrows Wheeler Transformation and 

extended it to a multi-set of words instead of a single block of text. In this case too, cyclic 

conjugates for all the words are produced and the entire lot is sorted. The sorting however 

is not lexicographic. The paper introduced another form of sorting called the ω sorting. 

 

ω Sorting[4] 

 
In normal lexicographic sorting, if we encounter two words of different lengths such that 

one is the prefix of another, then the smaller word is considered lexicographically smaller 

than the other, and hence is sorted above. However, in ω sorting, a word is expanded by 

repeating the same word over again, creating an infinitely (theoretical) long repeated 

sequence of original word (called, repeat-transformation). These repeat transformations 

of all the words are then sorted lexicographically. 

 

Consider two words ab and aba 

 

The conjugates of the word will be  

ab and ba 

aba, baa and aab 

 

Sorting them lexicographically gives 

1. aab 

2. ab 

3. aba 

4. ba 

5. baa 

 

Creating repeats of the words we get 

ab: abababababababab… 

ba: babababababababa… 

aba: abaabaabaabaaba… 

baa: baabaabaabaabaa… 

aab: aabaabaabaabaab… 

 

Sorting these strings lexicographically gives 

1. aab 

2. aba 

3. ab 

4. baa 

5. ba 
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3.4 Distance Measurement 

 
The notion of distance between two sequences .Such a notion is based on the following 

intuitive idea. Given two sequences u and v, we consider the sorted list of the conjugates 

of u and v, obtained in the first step of the computation of E({u,v}). If the same segment s 

appears both in u and v, then the conjugates of u and v starting with s are likely to be 

close in the above list. The greater is the number of segments shared by the two 

sequences u and v, the greater is the number of alternations in the above list between the 

elements coming from u and those coming from v. Thus, we define a distance that takes 

into account the alternation of the symbols coming from different sequences in the output 

of the transformation E.  

 

More formally, let S = {u,v} and let be the sorted list of conjugates 

of u and v obtained in the first step of the computation of E({u,v}). Consider the new 

alphabet Σ = {U,V} and the map γ that associates to each sequence  

 in the list, a symbol of Σ as follows: 

 

 
 

 

 

Let    

 

If be two sequences and . 

The distance is then defined as:  

 
 

 

 

 

 

3.5 EBWT on CUDA[8][9] 

  
The EBWT logic on CUDA was distributed into phases of functionality, with each phase 

being handled either by the CPU or the GPU, based on the feasibility to parallelize that 

phase. 

 

The phases involved were: 

- Accepting a weighted sequence and pattern 

- Converting the weighted sequence into solid sequences and patterns, based on a 

threshold value. 
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- Generating conjugates for each of the generated solid sequence and pattern. 

- Sort the repeated conjugates 

- Calculate the distances based on the sorted data. 

 

The conversion of weighted sequence to solid sequences is a typical exponential problem. 

Due to the nature of brute-computation required in enumerating the various sequences 

formed, parallelizing the operation was not found feasible.  

 

However, in order to reduce the overhead of constants involved, an intuitive approach of 

efficiently selecting only those nodes that satisfy the threshold value was followed. In 

order to do this, the weighted positions were arranged in the descending order of the 

probabilities. Of these, those nodes satisfying the threshold value were marked ‘Black’ 

and a chain of such ‘Black nodes’ was created.[10] 

 

The conjugate-generation of these solid sequences was parallelized.  Every sequence was 

allotted a block, wherein, each thread in the block was responsible for the generation of 

one conjugate. 

As an illustration, let’s examine how the fifth conjugate of the first sequence was formed, 

assuming the sequence length to be 10. 

The thread which would be assigned to generate conjugate number 5 would be the fifth 

thread in the block to which the first word is assigned to. The fifth thread, based on its 

threadIdx.x would simply copy the content of the first word from position 6 to 10 to a 

temporary memory location. It would then be followed by the copying of content of 

location 0 to 5 of the first word and concatenate it to the temporary location, thereby 

forming the required conjugate. 

 

The total number of threads required for this operation would be the number of sequences 

and patterns times the maximum width a sequence or pattern, since, the number of 

conjugates generated in each pattern or sequence would be equal to the number of 

characters contained in it. 

 

The conjugate-generation operation was followed by the sorting of these generated 

conjugates. Sorting in parallel has been a widely discussed topic. However, due to the 

strict constraints posed by the underlying architecture of the GPU, sorting efficiently was 

quite a challenge. The traditional Bitonic sort [11] proved to be too inefficient 

considering execution-time. As a move to improve this, Thrust [12] a set of libraries 

providing STL functionality in the CUDA framework was made use of. These libraries 

make use of an efficient Radix Sort as given by Satish et al. in the paper Designing 

Efficient Sorting Algorithms for Manycore GPUs.[13] 

 

Once the sorted, the distances of the conjugates are then calculated. The distance 

calculation when linearly implemented, is invariably an operation, where n is 

the number of generated conjugates. And given the low-inter communication required in 



20 

 

Weighted input 

Un-weighted input 

Generate solid 

sequences 

 

DEVICE 

 

Card-transfer 

overheads 

Card-transfer 

overheads 

the calculation, this operation when parallelized produced promising results. The 

operation when parallelized makes one thread in a block responsible for the distance 

calculation of one sequence-pattern pair. Hence, a total of threads, running in 

parallel, are able to calculate the distance measure. 

 

 

To summarize the work, the following flow diagram shows the control of transfer in the 

execution of the EBWT logic: 

START createSolidSequences 

ColorNodes 

Generate conjugates 

Sort conjugates 

Prepare data to calculate 

distances 

Display distances between each 

pair of sequences and patterns END 
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Chapter 4: Analysis and Results 

 
 

 INPUT 

• Length of weighted sequence  :  

• Length of weighted pattern  :  

• Threshold parameter   :  (Note: Threshold =   )

 

1. Conversion of weighted sequences to solid sequences: 
Performed on Host  

 

• In the following discussion, let  represent either  or . 

•  and  represent the number of positions in the input weighted sequence and 

pattern respectively. 

 

Sub-operations and timing 

  

1. Identify Black nodes, based on :  

 

 

   

 

  

   

 

2. Construct Black-node graph:  

3. Form solid sequences from above constructed graph:  

 

Resulting data generated: 

 

• Total number of solid sequences,  :   

• Total number of solid patterns,   :   

• Width of each solid sequences,  :  

• Width of each solid pattern,   :  

A 

C 

G 

T 
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2. Initialize offsets and generate conjugates of each solid sequence 

Performed on Device 

 
 

Sub-operations 

 
1. Generate conjugates of every solid sequence: 

 

Each solid word is assigned one block. Each thread in that block is assigned one 

character of that word. Each thread thus is responsible for creating one conjugate. 

The resulting conjugates are stored in a contiguous locations of a char[] data 

structure. 

 

• Conjugate generation cost by each thread :  

• Number of active threads     

• Number of active blocks      

• Responsible code: 
 

dev_strncpy(conjugate_of_my_concern, pw_of_my_concern + 

conjugate_no, pw_len gth[blockIdx.x]-conjugate_no); 

 

dev_strncpy(conjugate_of_my_concern + pw_length[blockIdx.x] - 

conjugate_no,p w_of_my_concern, conjugate_no); 

 

• Moreover, efficient utilization of card bandwidth is achieved while writing 

elements to the global memory space, due to the contiguous nature of memory 

calls. 

 

• The gather operations and string operations, are, however, not efficient. 

 

2. Keep track of every conjugate’s parent solid word :  

 

• Maintain a from[] array to keep in store the parent index. 

• Maintained as and when a conjugate is created. 
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3. Lexicographic Sorting of generated conjugates 

Performed on Device 

 
 
Sorting is the performance bottle-neck in our implementation. A Bitonic sort 

implemented in CUDA resulted in a degradation of performance as compared to Uni-

processor performance. 

 

For a Bitonic Sort, which makes use of the Odd-Even sorting principle, the results on the 

runs were: 

 

Length of solid sequence Time taken to perform Bitonic Sort (in s) 

GPU CPU 

50 0.235 0.2500 

60 0.341 0.3750 

70 0.473 0.3280 

80 3.226 2.188 

90 27.148 25.172 

100 171.97 120.468 

110   235.184 155.690 

120 314.291 199.469 

130 411.521 269.570 

140 513.339 298.2797 

150 639.562 384.219 

160 782.565 421.141 

170 904.870 512.000 

180 1600.894 598.370 
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190 1242.666 678.969 

200 1433.8454 729.078 

210 1648.092 883.219 

220 1882.680 974.359 

230 2134.472 1043.281 

240 2422.185 1179.797 

250 2442.583 1310.688 

260 4086.381 1452.141 

270 3359.381 1553.157 

280 15610.748 6818.651 

290 17331.973 8629.375 

300 -- -- 

 

The data has been processed in the following environment: 

 

• GPU used : NVIDIA Quadro 3700 FX 

• CPU used : Intel Pentium 4 uniprocessor 

• Compiling environment used: Microsoft Visual Studio 2005, enabled with NVCC, 

available through CUDA 3.0 SDK 

• Threshold value for weighted sequence, K = ⅕ 
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Shortcoming in the implementation of Bitonic Sort 

 
 

• The implementation of the Odd-Even Sort or Bitonic Sort is divided into 3 stages, 

as seen from the perspective of the device. The stages are: 

 

Stage 1: 

 

In the device, each thread is assigned to handle two ptr_d[ ]* elements. In accessing 

these two elements, the threads create an un-coalesced gather operation from the global 

memory of the device, thereby greatly decreasing capable memory bandwidth and 

increasing the access time by a few hundred clock cycles. 

 

Stage 2: 

 

Once the values of ptr_d[i] and ptr_d[i+1]are obtained by a thread, the characters 

pointed to by these values are accessed through a global-memory access. (This is done by 

passing these values in __device__ dev_strcmp()* method)  

 

Since this gather operation is more scattered than the previous operation, there exists a 

further inefficiency in the bandwidth utilization, thereby costing a few hundred more 

clock cycles for the operation. 

 

Stage 3: 

 

Once the characters from the sequences are read and compared, appropriate changes to 

their positions' data is calculated. This calculation is reflected onto ptr_d[ ]by making 

a global-write. 

 

Since these writes too are scattered in nature, no attempt to utilize the full-bandwidth is done. 

 

• The above stages highlight a high-degree of scattering while making global 

memory calls.  

In addition to this, the number of kernel calls generated by the CPU for Bitonic Sort too 

is (tot_length
*
). In a typical run, tot_length ≈ 106.  

Hence, the CPU overhead of launching these many kernels is also high. 
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An Improvement: 

 

In the implementation of Bitonic Sort, it may be noted, that Stages 1 and 3 are 

unavoidable, no matter what our approach to the whole sorting operation is. An 

optimization, if any, may be considered for Stage 2 of this process.  

 

Satish et al., in their paper Designing Efficient Sorting Algorithms for Manycore GPUs, 

discuss an efficient implementation of the Radix Sort on CUDA. This implementation is 

being incorporated on Stage 2 of our sorting process.  

 

The theory discussed in the paper, however, has a limitation while being implemented. Its 

strategy to improve performance involves message passing among thread blocks. 

However, a clear description of the implementation details is missing. It maybe noted that 

CUDA explicitly does not support message passing between blocks of thread. 

 

These shortcomings aside, the approach promises a considerable speed-up as compared to 

Bitonic Sort, if implemented. The features contributing to the projected speed-up are: 

 

1. The number of kernel calls needed to sort the entire all_repeat[ ]* array would be 

of the order Ο(max_width*), in contrast to an order Ο(tot_length) required by Bitonic 

Sort. 

 

2. The implementation makes use of the fast-caches, local to each thread-block to 

perform calculations, as opposed to using the global memory. The access to these caches 

is significantly faster than global memory accesses.  

 

This shared memory is not used at all, in the implementation of Bitonic Sort. 

 

 

 
 

* Please refer appendix for a description of the variables 
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Lexicographic Sorting using Thrust Libraries and consequences 

 
 

Thrust is a library which provides an STL interface to coding in CUDA. Along with a 

user-friendly library data structures, it also provides highly-optimized implementation of 

standard algorithms, such as sorting and searching. 

 

We attempted to implement our ideas using Thrust. Thrust does not provide any ready-

made implementation of lexicographic sorting. In order to achieve this, an intermediate 

class had to be written, the objects of which imitated the list of solid words. The objects 

were then passed to the library defined sorting functions, keeping in regard the syntax 

and data-structure requirements of these functions. This helped achieve a significant 

improvement in our performance. The library sort functions use the ideas discussed in the 

paper by Satish et al.  

 

The executions timed against the CPU performance along with the user-defined class are 

tabulated below. 

 

 
 

Results on implementing Lexicographic Sort using Thrust 

 
 

Length of solid sequence Time taken to perform Bitonic Sort (in s) 

GPU CPU 

50 0.016 0.2500 

60 0.016 0.3750 

70 0.031 0.3280 

80 0.046 2.188 

90 0.140 25.172 

100 0.360 120.468 

110 0.422 155.690 

120 0.531 199.469 
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130 0.593 269.570 

140 0.719 298.2797 

150 0.812 384.219 

160 0.921 421.141 

170 1.079 512.000 

180 1.265 598.370 

190 1.375 678.969 

200 1.531 729.078 

210 1.688 883.219 

220 1.906 974.359 

230 2.047 1043.281 

240 2.250 1179.797 

250 2.422 1310.688 

260 2.703 1452.141 

 

 

Results on implementing Lexicographic Sort using Thrust with improvised CPU 

code  

(in seconds) 

 
 

Length of 

sequence 

GPU CPU 

Sort Distance Total Sort Distance Total 

50 0.016 0.016 0.594 0.031 0.470 0.109 

60 0.016 0.015 0.625 0.031 0.032 0.063 



29 

 

70 0.031 0.016 0.735 0.031 0.470 0.078 

80 0.046 0.078 1.562 0.062 0.359 0.484 

90 0.140 0.772 4.016 0.172 2.779 3.062 

100 0.360 5.50 13.07 0.500 23.844 24.515 

110 0.422 6.00 14.82 0.500 25.734 26.437 

120 0.531 6.563 15.922 0.593 28.39 29.265 

130 0.593 7.093 16.656 0.657 30.50 31.422 

140 0.719 7.625 18.203 0.703 33.094 34.094 

150 0.812 8.188 19.36 0.875 35.437 36.625 

160 0.921 8.797 20.719 0.860 37.89 39.14 

170 1.079 9.219 22.0 0.953 40.359 41.734 

180 1.265 9.783 23.485 1.046 42.078 43.531 

190 1.375 10.344 25.672 1.187 44.984 46.625 

200 1.531 2.953 26.50 1.297 47.282 49.078 

210 1.688 11.453 28.00 1.39 49.641 51.953 

220 1.906 11.979 29.359 1.453 51.984 54.593 

230 2.047 12.578 30.937 1.516 53.843 56.093 

240 2.250 13.094 32.672 1.65 57.172 59.516 

250 2.422 13.61 33.625 1.75 59.532 63.0 

260 2.703 14.141 35.203 1.843 61.563 64.469 
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It may be observed in the previous results that GPU outperforms the CPU through a 5X 

speed up. However, the total time, which is not the sum of the times taken to sort the 

conjugates and calculate the distances between them, is reduced from the 5X mark due to 

the card’s overhead of moving data to and from the RAM, hence, bringing down the 

speed up to 2X. 

 

The implementation now brings in to focus the constraints posed by the ranges of the 

data-types used in the implementation. Given good sorting speeds, there is an upper limit 

to the amount of data which can be crunched by the current implementation. An analysis 

of this follows –  

 

1. The maximum file size possible to be tested in current implementation 

 

• In the course of the implementation, we define tot_length to keep track of the 

sum of all string lengths of the weighted sequences generated. 

 

tot_length is assigned type unsigned int. 

 

On a 64-bit machine, this translates to maximum capacity of the variable to be: 2
4x8=32

 

since unsigned int is assigned 4 bytes.  

 

• Let n be the string length of the Weighted input sequence. Then, the number of 

strings generated, in the worst case, are Ο(4
n 

)  

 

In this case, the sum of all string lengths generated would be Ο(n.4
n 
) 

 

• For correct operability, n.4
n
 ≤  2
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Solving for n, we get n ≈ 14.5 

 

As a result, we immediately get an upper bound to the size file usable for comparison of 

sequences.  

 

Assuming each character consumes one byte, a typical input file of the pattern may not 

exceed 500 bytes (given, there exists a fixed format for the input files) 

 

Moreover, there also exists a bound on the memory spaces Malloc() can allocate, the 

number of elements the STL data type vector<> can contain and the total number of 

blocks a kernel can launch.  
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Conclusion and Future Work 

 
 

The results have shown that an efficient implementation on CUDA may result in a 

significant increase in performance. This increase encourages us to explore new 

applications wherein the functionalities of EBWT can be used to solve real-life problems. 

 

As food for thought, we would like to see how EBWT would perform if applied to the 

problem of matching images. Image identification and matching is a problem with 

massive real-life application. If EBWT succeeds to imitate existing algorithms in 

recognizing and matching two images, we shall have found a plausible alternative in 

approaching the problem. Moreover, its impact onto application domains such as 

robotics, reverse-image searching etc. shall also be interesting to study. 

 

Moreover, if the functionality of EBWT is able to translate to the domain of matching 

images, it shall help analyze many other open-ended problems such as matching of audio-

samples, matching of motion pictures etc. These problems, if solved efficiently, promises 

tremendous impact on everyday applications. 
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Appendix  

 

1. Table of some key variables used in the implementation 

 

Name of variable 

 

Data Type 

 

Size/Bound 

 

Description 

 

max_width 

 

unsigned int 

 

< 500 
It contains the maximum 

length a solid sequence 

may have 

 

tot_length 

 

unsigned int 

 

< sizeof(int) 
It contains the sum of the 

string lengths of all solid 

sequences generated 

 

all_repeats 

 

char* 

 

max_width*tot_length 
It contains all the 

generated conjugates/ 

padded conjugates 

needed for the EBWT, 

placed contiguously in the 

array.  
 

ptr_d 

 

char* 

 

tot_length 
It contains the address of 

the beginning of every 

solid sequence stored in 

all_repeats[] 



33 

 

2. Class definition to imitate a string on the device 

 

#include <thrust/device_ptr.h> 

#include <thrust/host_vector.h> 

#include <thrust/device_vector.h> 

#include <thrust/sort.h> 

#include <thrust/copy.h> 

 

#define POOL_SZ (100*1024*1024) 

using namespace std; 

 

class device_string 

{ 

public: 

    int cstr_len; 

    char* raw; 

    thrust::device_ptr<char> cstr; 

 

    static char* pool_raw; 

    static thrust::device_ptr<char> pool_cstr; 

    static thrust::device_ptr<char> pool_top; 

 

 // Sets the variables up the first time its used. 

    __host__ static void init() 

        { 

            static bool v = true; 

            if( v ) 

            { 

                v = false; 

                 

                pool_cstr = thrust::device_malloc(POOL_SZ); 

                pool_raw  = (char*)raw_pointer_cast( pool_cstr 

); 

                pool_top = pool_cstr; 

            } 

        } 

 // Destructor for device variables used. 

    __host__ static void fin() 

        { 

            init(); 

            thrust::device_free(pool_cstr); 

        } 

 

 // Parametrized constructor to copy one device_string to 

another. 

    __host__ device_string( const device_string& s ) 
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        { 

            cstr_len = s.cstr_len; 

            raw = s.raw; 

            cstr = s.cstr; 

        } 

 

 // Parametrized constructor to copy a std::string to 

device_string type             

    __host__ device_string( const std::string& s ) 

  { 

   cstr_len = s.length(); 

   init(); 

   cstr      = pool_top; 

            pool_top += cstr_len+1; 

            raw = (char *) raw_pointer_cast(cstr); 

            cudaMemcpy( raw, s.c_str(), cstr_len+1, 

cudaMemcpyHostToDevice ); 

  } 

     

 // Default constructor. 

 __host__ __device__ device_string() 

  { 

   cstr_len = -1; 

   raw = NULL; 

  } 

 

 // Conversion operator to copy device_string type to 

std::string 

 __host__  operator std::string (void)  

  {  

    thrust::host_vector<char> temp(cstr_len);  

    thrust::copy(cstr, cstr + cstr_len, temp.begin());  

    std::string result(temp.begin(), temp.end());  

    return result;  

  } 

}; 

char* device_string::pool_raw; 

thrust::device_ptr<char> device_string::pool_cstr; 

thrust::device_ptr<char> device_string::pool_top; 

 

// User-defined comparison operator 

bool __device__ operator < (device_string lhs, device_string 

rhs) 

{ 

    char* l = lhs.raw; 

    char* r = rhs.raw; 
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    for( ; *l && *r && *l==*r; ) 

    { 

        ++l; 

        ++r; 

    } 

    return *l < *r; 

} 



36 

 

References 

 
 
1 NVIDIA Corporation, NVIDIA CUDA Programming Guide, Nov. 2007. Version 

1.1. 

 

2 NVIDIA Corporation, NVIDIA OpenCL Best Practices Guide Version 1.0, July 

10, 2009. 

 

3 M. Burrows and D.J. Wheeler, A Block-sorting Lossless Data Compression 

Algorithm, SRC Research Report, DIGITAL Systems Research Center, Palo Alto, May 

10, 1994. 

 

4 S. Mantaci, A. Restivo, G. Rosone, M. Sciortino, An extension of the Burrows–

Wheeler Transform, Theoretical Computer Science 387, Pp. 298–312, 2007. 

 

5 Sabrina Mantaci, Antonio Restivo, G. Rosone, and Marinella Sciortino, An 

Extension of the Burrows Wheeler Transform and Applications to Sequence Comparison 

and Data Compression, Lecture Notes in Computer Science, Springer 3537/2005, Pp. 

178-189, May 2005. 

 

6 Jamie Simpson, Simon J. Puglisi, Words with simple Burrows-Wheeler 

Transforms, The Electronic Journal of Combinatorics, Volume 15(1), 2008, #R83, 2008. 

 

7 Matt Powell, Compressed-Domain Pattern Matching with the Burrows-Wheeler 

Transform, Honours Project Report, Canterbury Corpus, New Zealand, 2001. 

 

8 Gregory Diamos, Sudnya Padalikar, Exploring The Latency and Bandwidth 

Tolerance of CUDA Applications, NFinTes Tech Report, December 2009. 

 

9 Lung-Sheng Chien, Hand-Tuned SGEMM on GT200 GPU, Technical Report, 

Department of Mathematics, Tsing Hua university, R.O.C. (Taiwan), 2009. 

 

10 Costas S. Iliopoulos, Christos Makris, Yannis Panagis, Katerina Perdikuri, 

Evangelos Theodoridis, The Weighted Suffix Tree: An Efficient Data Structure for 

Handling Molecular Weighted Sequences and its Applications, Fundamenta Informaticae, 

71(2-3), Pp. 259-277, 2006. 

 

11  T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to 

Algorithms, MIT Press, Second edition, Sept. 2001. 

 



37 

 

12 Jared Hoberock and Nathan Bell, Thrust: A Parallel Template Library, version 1.2, 

http://www.meganewtons.com/, 2009. 

 

13 Nadathur Satish, Mark Harris, Michael Garland, Designing Efficient Sorting 

Algorithms for Manycore GPUs, Proceedings of the 23rd IEEE International Parallel and 

Distributed Processing Symposium, May 2009. 
 

  

 

 


