
1

EFFICIENT SEQUENCE COMPARISONS USING THE

EXTENDED BURROWS WHEELER TRANSFORM

A TECHNICAL REPORT

Submitted in the partial fulfillment of the requirements of

MICROSOFT AWARD FOR SUMMER INTERNSHIP

BY

SHASHANK SRIKANT

NATIONAL INSTITUTE OF TECHNOLOGY, KURUKSHETRA

DEPARTMENT OF ELECTRONICS AND COMPUTER

ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE - 247 667 (INDIA)

JULY, 2010

2

Candidate Declaration

I hereby declare that the work being presented in this technical report titled "Efficient

sequence comparisons using the Extended Burrows Wheeler Transform" in partial

fulfillment of the Microsoft Award for Summer Internship, submitted in the Department

of Electronics and Computer Engineering, Indian Institute of Technology Roorkee, is an

authentic record of my work done during my stay the period May 31 2010 to July 22

2010, carried out under Dr. Rajdeep Niyogi, Assistant Professor, Department of

Electronics and Computer Engineering, Indian Institute of Technology Roorkee, India.

Dated :

Place : IIT Roorkee Shashank Srikant

Certificate

This is to certify that the above statements made by the candidate are correct to the best

of my knowledge.

Dated :

Place : IIT Roorkee

Dr Rajdeep Niyogi

Assistant Professor,

Department of Electronics and Computer Engineering

IIT Roorkee

3

Acknowledgement

At the outset, I would like to thank the Department of Electronics and Computer

Engineering, Indian Institute of Technology Roorkee for allowing me to spend quality

time here and providing all the resources needed to work on good, challenging problems

in the domain of High Performance Computing.

In particular, I would like to profusely thank Dr. Rajdeep Niyogi, my guide here at

Roorkee, for allowing me to be a part of his team and providing the direction and the

right ambience to work on a fresh problem in the world of Computer Science. His advice,

insight into a problem, patience and the care he showed is something which eased my

settling in here at Roorkee.

I would also like to thank Mr. Binay Kumar Pandey, Research Scholar, Department of

Electronics and Computer Engineering, IIT Roorkee for his constant supervision and care

in seeing to it that the least of inconvenience came my way. I would like to express my

deep sense of gratitude to him for having advised me in the direction of my work, created

a congenial work-environment and been ready to help me out at any given time.

I would also like to thank Dr. Navneet Gupta, In-charge, Institute Computer Centre, for

allowing me to make use of the Research Scholars’ lab at ICC.

I thank Stanley Seibert, Los Alamos Laboratory, United States of America and Nathan

Bell and Jared Hoberock, NVIDIA Research for providing me valuable suggestions

regarding programming on NVIDIA CUDA.

Lastly, I thank Achin for being the good company he was during my stay at Roorkee.

4

Abstract

Over the recent years, there has been an extensive development in the field of

Bioinformatics. A couple amongst the various works done under this field includes

Genome based phylogenetic studies. Genome based phylogenetic studies include the

process of matching mitochondrial DNA of different species to establish their

phylogenetic relation. One novel algorithm in order to achieve this is the Extended

Burrows Wheeler Transform.

The Extended Burrows Wheeler Transform is a new development in the field of

Computer Science which discusses a good strategy to compress multiple strings

efficiently. However, the transform operations are compute-intensive due to the sheer

size of the mitochondrial genomes used as input data. All this necessitates an

optimization of such algorithms by parallelization or other means.

Our research looks at this particular application in detail, exploring the various aspects of

the transformation which could help efficiently parallelize the operations in order to

perform them quickly. The parallelization has been performed on Nvidia CUDA. CUDA

is a parallel programming architecture which acts as a middle-ware compute engine

which exposes the computational power of the NVIDIA Graphics Processing Units to

software developers through industry standard programming.

The work done here analyses the working of EBWT on CUDA and describes an efficient

implementation model. The implementation model described here manages a 5X speed

up on some of the most compute-intensive parts of the operation. This speed-up proves

credibility to the fact that this transformation technique may indeed help in the real-time

realization of comparing genomic sequences. Given this credibility, new applications

based on EBWT are discussed as future scope of the performed work.

5

Table of Content

Chapter 1: Introduction 6

 1.1 Sequence comparison in genetic data 6

 1.2 Multi-core Architecture 7

 1.3 Problem Statement 7

 1.4 Organization of this Report 7

Chapter 2: Parallel Processing Architectures 8

 2.1 GPU 8

 2.2 CUDA 8

 2.3 General Architecture 9

 2.4 Thread Organization 10

 2.5 Execution Model 11

 2.6 Memory Layout 12

 2.7 Software Model 13

Chapter 3: Extended Burrows Wheeler Transformation 15

 3.1 Introduction to the Burrows Wheelers Transform 15

 3.2 Burrows Wheelers Transform 15

 3.3 An extension to the BWT 17

 3.4 Distance Measure in EBWT 18

 3.5 Parallelization of EBWT on CUDA 18

Chapter 4: Analysis and Results 21

Chapter 5: Conclusion and Future work 31

Appendix 32

References 36

6

 Chapter 1: Introduction

1.1 Phylogenetic Analysis

Every living organism is made up of DNA and proteins as constituents of its cells which

form the organism’s basic building block. In addition to these molecular constituents

defining the organism’s outward appearance and biological functions, they also help

biologists ascertain the related-ness or non- related-ness of two organisms. It was

observed that organisms of different species that closely relate show a great deal of

similarity in the molecular structure or sequence of chemical components of these

biological constituents of the cell.

One such cell constituent is the mitochondrial DNA (mtDNA) which undergoes

mutations over generations. The mtDNA is passed only from the maternal side, with no

change except mutation. Such a comparative analysis of mtDNA help biologists to

arrange various species in a tree forma with related species represented as closer

branches. The simplistic means of such an analysis would be a simple string comparison

between the two DNA sequences. Such algorithms generally depend upon the product of

length of both sequences for their runtime.

However, there exists a novel way of having multiple strings compared for similarity,

which is an application of the Extended Burrows Wheeler Transform (EBWT). This

would take less time than having all combination of simple sequence comparison

between each pair of sequences. The EBWT however still requires long processing times

due to the sheer sizes of mtDNA data. This necessitates the reduction in runtime of the

EBWT algorithm.

1.2 Multi-Core Architectures

Moore’s Law had predicted that the chip manufacturing technology would be able to

double the transistors on chip roughly every two years, which has stood good so far.

Microprocessor technology has been using this prediction to improve its frequency by

various techniques. However, in the recent past, micro-processors have hit a frequency

wall, and not been able to take advantage of the predicted exponential growth. The

outcome of this wall is the emergence of multi-core processors, which offer the

performance benefits of multi-processors on a single chip. The presence of such

architectures as common desktop processors has made it possible for hitherto time-

consuming algorithms to be involved on simple desktop machines.

7

Another emerging trend has been the use of Graphics Processing Units (GPUs) for

general purpose computing. The GPUs model themselves as multi-core processing and

expect programs to take advantage of them as raw parallel number-crunchers. The multi-

core processors allow programs to leverage their computing power by various means like

independent threads per core or allow users to manipulate efficient data flow between

cores, or provide a layer of software which manages the scalability of the cores. With the

future micro-processors the trend is likely to increase the number of cores to increase

computation power. Hence, it becomes important for algorithms to be parallelized to run

on these next-generation micro-processors.

Thus, multi-core processors provide the perfect means of increasing the runtimes of our

analysis and implementation of the EBWT applied to sequence comparisons.

1.3 Problem Statement

In our work, algorithms used in the EBWT were studied and profiled for bottlenecks.

Since the problem portion of the algorithm caused its runtime to go into hours, it was

required to find alternatives to be able to speed up the algorithm. This could include

parallelization and modifying the algorithms used.

The objective was to parallelize the algorithms and find out if there was any improvement

in the run-time performance.

1.4 Organization of the Report

This report is organized as follows:

Chapter 2 covers a detailed explanation of the CUDA programming environment which

was used in this dissertation.

Chapter 3 introduces the concepts of the Extended Burrows Wheeler Tranform. It then

discusses the implementation on CUDA and the issues faced therein. The results are also

discussed and analyzed.

Chapter 5 concludes this report and ponders over work which might follow the results

obtained.

8

Chapter 2: Parallel Processing Architectures

2.1 GPU

A graphics processing unit or GPU (also occasionally called visual processing unit or

VPU) is a specialized processor that offloads 3D graphics rendering from the

microprocessor. It is used in embedded systems, mobile phones, personal computers,

workstations, and game consoles. Modern GPUs are very efficient at manipulating

computer graphics, and their highly parallel structure makes them more effective than

general-purpose CPUs for a range of complex algorithms. In a personal computer, a GPU

can be present on a video card, or it can be on the motherboard. More than 90% of new

desktop and notebook computers have integrated GPUs, which are usually far less

powerful than those on a video card.

GPUs are massively multi-threaded many-core chips. They are mainly designed to handle

billions of pixels, millions of polygons per second. The contain thousands of processor

cores compared to the traditional CPU which contains 2, 4 or 8 cores. Scalability in these

processors is very high and there exist hundreds of scalable processors. In general, they

are able to run tens of thousands of concurrent threads. Some of the best computing times

clocked on modern-day GPUs are close to 1 T Floating point Operations per Second

(FLOPS). They implement fine grained data-parallel computation and are able to

implement algorithms developed for the exotic computers.

2.2 CUDA[1][2]

NVIDIA is best known for motherboard chip sets as well as for outstanding graphics

processors that have become popular as the basis for graphics cards. In the quest for

maximum speed, NVIDIA's GPUs (Graphics Processing Units) have evolved far beyond

single processors. Modern NVIDIA GPUs are not single processors but rather are parallel

supercomputers on a chip that consist of very many, very fast processors. Contemporary

NVIDIA GPUs range from 16 to 256 stream processors per card, delivering incredibly

powerful computing bandwidth. The card shown above, for example, provides 256

stream processors.

Although the market impetus behind the creation of such supercomputers on a plug-in

board has been the computational demands of the PC gaming market, such "graphics"

boards have become so powerful that the scientific computing community has begun

9

using them for general purpose computing. It turns out that many mathematical

computations, such as matrix multiplication and transposition, which are required for

complex visual and physics simulations in games are also exactly the same computations

that must be performed in a wide variety of scientific computing applications, including

GIS.

NVIDIA has supported this trend by releasing the CUDA™ (Compute Unified Device

Architecture) interface library to allow applications developers to write code that can be

uploaded into an NVIDIA-based card for execution by NVIDIA's massively parallel

GPUs. This allows applications developers to plug in a 500 gigaflop, 256-processor,

NVIDIA-based card and upload applications to run within the NVIDIA GPU at far

greater speed than possible on even the fastest general purpose CPU on the motherboard.

For a mere few hundred dollars we can use CUDA to achieve true, supercomputer

performance on the desktop.

CUDA offers such tremendous performance gains that many functions within Manifold

have been re-engineered to execute as parallel processes within CUDA if such a card is

available. If we have a CUDA-capable NVIDIA graphics card installed in our system,

Manifold can take advantage of the phenomenal power of massively parallel NVIDIA

stream processors to execute many tasks at much greater speed.

The following section discusses some key features in the design and architecture of the

NVIDIA CUDA which makes it a much better computing platform than the rest of the

General Purpose GPUs available.

2.3 General Architecture

CUDA is a parallel programming model and software environment that leverages the

computational horsepower of GPU (graphics processing unit) for non-graphics

computing. CUDA technology was developed with several design goals in mind:

• CUDA is essentially a small set of extensions to the C programming language that

enable a straightforward implementation of parallel algorithms. With CUDA,

programmers can focus on the design of parallel algorithms rather than spending

time on the implementation.

• CUDA also supports heterogeneous computation where applications use both the

CPU and GPU. Serial portions of applications are run on the CPU, and parallel

10

portions are offloaded to the GPU. As such, CUDA can be incrementally applied

to existing C applications. The CPU and GPU are treated as separate devices that

have their own memory spaces. This configuration also allows simultaneous

computation on both the CPU and GPU without contention for memory resources.

 CUDA -capable GPUs have hundreds of cores that can collectively run thousands of

computing threads. Each core has shared resources, including registers and memory. The

on-chip shared memory allows parallel tasks running on these cores to share data without

sending it over the system memory bus.

2.4 CUDA Thread Organization

Since all threads in a grid execute the same kernel function, they rely on unique

coordinates to distinguish themselves from each other and to identify the appropriate

portion of the data to process. These threads are organized into a two-level hierarchy

using unique coordinates, called blockId

and threadId, assigned to them by the

CUDA runtime system. The blockId and

threadId appear as built-in variables that

are initialized by the run-time system and

can be accessed within the kernel

functions. When a thread executes the

kernel function, references to the blockId

and threadId variables return the

appropriate values that form coordinates

of the thread.

 Fig 2.1- Thread Organization

At the top level of the hierarchy, a grid is organized as a two dimensional array of blocks.

The number of blocks in each dimension is specified by the first special parameter given

at the kernel launch. For the purpose of our discussions, we will refer to the special

parameters that specify the number of blocks in each dimension as a struct variable

gridDim, with gridDim.x specifying the number of blocks in the x dimension and

gridDim.y the y dimension. The values of gridDim.x and gridDim.y can be anywhere

between 1 and 65,536. The values of gridDim.x and gridDim.y can be supplied by run-

time variables at kernel launch time. Once a kernel is launched, its dimensions cannot

change in the current CUDA run-time implementation. All threads in a block share the

11

same blockId values. The blockId.x value ranges between 0 and gridDim.x-1 and the

blockId.y value between 0 and gridDim.y-1.

2.5 Execution Model

CUDA is made up of several clusters of what Nvidia calls Texture Processor Clusters. An

8800GTX, for example, has eight clusters,

an 8800GTS six, and so on. Each cluster, in

fact, is made up of a texture unit and two

streaming multiprocessors.

These processors consist of a front end that

reads/decodes and launches instructions and

a backend made up of a group of eight

calculating units and two SFUs (Super

Function Units) where the instructions are

executed in SIMD fashion: The same

instruction is applied to all the threads in

the warp.

 Figure 2. 2: Architecture Overview

Nvidia calls this mode of execution SIMT (for single instruction multiple threads). It’s

important to point out that the backend operates at double the frequency of the front end.

In practice, then, the part that executes the instructions appears to be twice as “wide” as it

actually is (that is, as a 16-way SIMD unit instead of an 8-way one).

The streaming multiprocessors’ operating mode is as follows:

At each cycle, a warp ready for execution is selected by the front end, which launches

execution of an instruction. To apply the instruction to all 32 threads in the warp, the

backend will take four cycles, but since it operates at double the frequency of the front

end, from its point of view only two cycles will be executed. So, to avoid having the front

end remain unused for one cycle and to maximize the use of the hardware, the ideal is to

alternate types of instructions every cycle – a classic instruction for one cycle and an SFU

instruction for the other.

12

Each multiprocessor also has certain amount of resources that should be understood in

order to make the best use of them. They have a small memory area called ‘Shared

Memory’ with a size of 16 KB per multiprocessor. This is not a cache memory – the

programmer has a free hand in its management. As such, it’s like the Local Store of the

SPUs on Cell processors. This detail is particularly interesting, and demonstrates the fact

that CUDA is indeed a set of software and hardware technologies. This memory area is

not used for pixel shaders.

2.6 Memory Layout

This memory area provides a way for threads in the same block to communicate. It’s

important to stress the restriction: all the threads

in a given block are guaranteed to be executed by

the same multiprocessor. Conversely, the

assignment of blocks to the different

multiprocessors is completely undefined,

meaning that two threads from different blocks

can’t communicate during their execution. That

means that using this memory is complicated.

But it can also be worthwhile, because except for

cases where several threads try to access the

same memory bank, causing a conflict; the rest of

the time, access to shared memory is as fast as

access to the registers.

The shared memory is not the only memory the

multiprocessors can access. Obviously they can

use the video memory, but it has lower

bandwidth and higher latency. Consequently, to

limit too-frequent access to this memory, Nvidia

has also provided its multiprocessors with a Figure 2.3: Memory Layout

cache (approximately 8 KB per multiprocessor) for access to constants and textures.

The multiprocessors also have 8,192 registers that are shared among all the threads of all

the blocks active on that multiprocessor. The number of active blocks per multiprocessor

can’t exceed eight, and the number of active warps are limited to 24 (768 threads). So, an

8800GTX can have up to 12,288 threads being processed at a given instant. It’s worth

13

mentioning all these limits because it helps in dimensioning the algorithm as a function of

the available resources.

Optimizing a CUDA program, then, essentially consists of striking the optimum balance

between the number of blocks and their size – more threads per block will be useful in

masking the latency of the memory operations, but at the same time the number of

registers available per thread is reduced. What’s more, a block of 512 threads would be

particularly inefficient, since only one block might be active on a multiprocessor,

potentially wasting 256 threads. So, Nvidia advises using blocks of 128 to 256 threads,

which offers the best compromise between masking latency and the number of registers

needed for most kernels.

2.7 Software Model

From a software point of view, CUDA consists of a set of extensions to the C language,

and a few specific API calls. Among the extensions

are type qualifiers that apply to functions and

variables. The keyword to remember here is

__global__, which when prefixed to a function

indicates that the latter is a kernel – that is, a

function that will be called by the CPU and executed

by the GPU. The __device__ keyword designates a

function that will be executed by the GPU (which

CUDA refers to as the “device”) but can only be

called from the GPU (in other words, from another

__device__ function or from a __global__ function).

Finally, the __host__ keyword is optional, and

designates a function that’s called by the CPU Figure 2.4: Software Hierarchy

and executed by the CPU – in other words, a traditional function.

There are a few restrictions associated with __device__ and __global__ functions: They

can’t be recursive (that is, they can’t call themselves) and they can’t have a variable

number of arguments. Finally, regarding __device__ functions resident in the GPU’s

memory space, logically enough it’s impossible to obtain their address. Variables also

have new qualifiers that allow control of the memory area where they’ll be stored. A

variable preceded by the keyword __shared__ indicates that it will be stored in the

streaming multiprocessors’ shared memory. The way a __global__ function is called is

14

also a little different. That’s because the execution configuration has to be defined at the

time of the call – more concretely, the size of the grid to which the kernel is applied and

the size of each block. Take the example of a kernel with the following signature:

__global__ void Func(float* parameter);

which will be called as follows:

Func<<< Dg, Db >>>(parameter);

where Dg is the grid dimension and Db the dimension of a block. These two variables are

of a new vector type introduced by CUDA.

The CUDA API essentially comprises functions for memory manipulation in VRAM:

cudaMalloc() to allocate memory, cudaFree() to free it and cudaMemcpy() to copy data

between RAM and VRAM and vice-versa.

15

Chapter 3: An Extension to the Burrows Wheeler Transform

3.1 Introduction to the Burrows Wheeler Transform

The Burrows Wheeler’s transform[3] is a block-sorting, lossless data compression

algorithm, which is used in applications such as bzip2. It was developed by Michael

Burrows and David Wheeler. A variation of this algorithm was developed by Mantici et

al.[4]5] which extended the concept to a multi-set of words, unlike the original algorithm

which worked on a single block of text. A key realization by Mantici et al. was the

applicability of their extended algorithm to the domain of bio-informatics, namely the

matching of genomic data of species to establish their Phylogenetic proximity or non-

relatedness.

3.2 Burrows Wheeler Transform

The Burrows-Wheeler transform was given jointly by Burrows and Wheeler in 1994. It is

also known by another name called block-sorting. The very basic job of Burrows wheeler

transform is to sorts the block of characters, according to a lexical ordering of their

following context. This process can be thought as a sorting a matrix containing all cyclic

rotations of the string. An example matrix shown in Figure 3.1 is constructed for the

input string mississippi.

Each row is consists of one of the eleven rotations of the input, and then each rows have

been sorted lexicographically. The first column of this matrix contains the first

characters of the each rotated string, and the last column denotes the permuted

characters of the string that form the output of the .

 It is also necessary to transmit the position of the original string in the sorted matrix is

shown in fifth row of Figure 1. Therefore, the complete output for the string

 is the pair , as it is find that only a few characters are likely to

appear in any given context, that why move-to-front transform encoding scheme is

consider as an ideal scheme for encoding, which replaces the recently seen symbols with

shorter codes.

The random nature of the permuted text, make it almost impossible to recover the

original text without any other information, but on the hand a reverse transformation can

be performed easily on the given permuted string L, the first character index, and the

sorted matrix F, which can be obtained from the permuted string is in time.

This is infer from the two important considerations: first one is that, the sorted matrix is

constructed by performing cyclic rotations, so that each character in L is immediately

16

followed by the corresponding character in F, and secondly, that the instances of each

distinct character appear in the same order in both arrays F and L. In order to develop a

deep understanding an example given in which the third occurrence of the letter in L

corresponds to the third occurrence of in F, and so on. In this example, the first

character is at position 5 of F, and that this must correspond to at position 4 of L,

since there is only one in the text.

The next character is at position 4 of F, since characters in F immediately follow the

characters at the same index in L. This is the fourth in F, and so it corresponds to the

fourth in L at position 11, which in turn must be followed by an s. Continuing in this

way, it is possible to decode the whole string in .[6]

If it is not necessary to decode the entire string at once, a transform array W can be

computed in linear time with a single pass through the L and F arrays, such that

Where , and is the index of the original text in the

sorted matrix. By traversing with , we have a means of decoding arbitrary substrings

of the text.

.

 Figure 5.1

S. NO

 FIRST

COLUMN

LETTER

 (F)

PERMUTED

STRING

LAST

COLUMN

LETTER

 (L)

S. NO

LAST

COLUMN

LETTER

 (L)

FIRST

COLUMN

LETTER

(F)

SORTED

 LIST OF

SUBSTRINGS

1

i

mississip

p

1

p

i

2

i

ppimissis

s

2

s

i

ppi

3

i

ssippimis

s

3

s

i

ssippi

4

i

ssissippi

m

4

m

i

ssissippi

5

m

ississipp

i

5

i

m

ississippi

6

p

imississi

p

6

p

p

i

7

p

pimississ

i

7

i

p

pi

8

s

ippimissi

s

8

s

s

ippi

9

s

issippimi

s

9

s

s

issippi

10

s

sippimiss

i

10

i

s

sippi

17

3.3 Extended Burrows Wheeler Transform[7]

Mantici et al. produced a variation in of the Burrows Wheeler Transformation and

extended it to a multi-set of words instead of a single block of text. In this case too, cyclic

conjugates for all the words are produced and the entire lot is sorted. The sorting however

is not lexicographic. The paper introduced another form of sorting called the ω sorting.

ω Sorting[4]

In normal lexicographic sorting, if we encounter two words of different lengths such that

one is the prefix of another, then the smaller word is considered lexicographically smaller

than the other, and hence is sorted above. However, in ω sorting, a word is expanded by

repeating the same word over again, creating an infinitely (theoretical) long repeated

sequence of original word (called, repeat-transformation). These repeat transformations

of all the words are then sorted lexicographically.

Consider two words ab and aba

The conjugates of the word will be

ab and ba

aba, baa and aab

Sorting them lexicographically gives

1. aab

2. ab

3. aba

4. ba

5. baa

Creating repeats of the words we get

ab: abababababababab…

ba: babababababababa…

aba: abaabaabaabaaba…

baa: baabaabaabaabaa…

aab: aabaabaabaabaab…

Sorting these strings lexicographically gives

1. aab

2. aba

3. ab

4. baa

5. ba

18

3.4 Distance Measurement

The notion of distance between two sequences .Such a notion is based on the following

intuitive idea. Given two sequences u and v, we consider the sorted list of the conjugates

of u and v, obtained in the first step of the computation of E({u,v}). If the same segment s

appears both in u and v, then the conjugates of u and v starting with s are likely to be

close in the above list. The greater is the number of segments shared by the two

sequences u and v, the greater is the number of alternations in the above list between the

elements coming from u and those coming from v. Thus, we define a distance that takes

into account the alternation of the symbols coming from different sequences in the output

of the transformation E.

More formally, let S = {u,v} and let be the sorted list of conjugates

of u and v obtained in the first step of the computation of E({u,v}). Consider the new

alphabet Σ = {U,V} and the map γ that associates to each sequence

 in the list, a symbol of Σ as follows:

Let

If be two sequences and .

The distance is then defined as:

3.5 EBWT on CUDA[8][9]

The EBWT logic on CUDA was distributed into phases of functionality, with each phase

being handled either by the CPU or the GPU, based on the feasibility to parallelize that

phase.

The phases involved were:

- Accepting a weighted sequence and pattern

- Converting the weighted sequence into solid sequences and patterns, based on a

threshold value.

19

- Generating conjugates for each of the generated solid sequence and pattern.

- Sort the repeated conjugates

- Calculate the distances based on the sorted data.

The conversion of weighted sequence to solid sequences is a typical exponential problem.

Due to the nature of brute-computation required in enumerating the various sequences

formed, parallelizing the operation was not found feasible.

However, in order to reduce the overhead of constants involved, an intuitive approach of

efficiently selecting only those nodes that satisfy the threshold value was followed. In

order to do this, the weighted positions were arranged in the descending order of the

probabilities. Of these, those nodes satisfying the threshold value were marked ‘Black’

and a chain of such ‘Black nodes’ was created.[10]

The conjugate-generation of these solid sequences was parallelized. Every sequence was

allotted a block, wherein, each thread in the block was responsible for the generation of

one conjugate.

As an illustration, let’s examine how the fifth conjugate of the first sequence was formed,

assuming the sequence length to be 10.

The thread which would be assigned to generate conjugate number 5 would be the fifth

thread in the block to which the first word is assigned to. The fifth thread, based on its

threadIdx.x would simply copy the content of the first word from position 6 to 10 to a

temporary memory location. It would then be followed by the copying of content of

location 0 to 5 of the first word and concatenate it to the temporary location, thereby

forming the required conjugate.

The total number of threads required for this operation would be the number of sequences

and patterns times the maximum width a sequence or pattern, since, the number of

conjugates generated in each pattern or sequence would be equal to the number of

characters contained in it.

The conjugate-generation operation was followed by the sorting of these generated

conjugates. Sorting in parallel has been a widely discussed topic. However, due to the

strict constraints posed by the underlying architecture of the GPU, sorting efficiently was

quite a challenge. The traditional Bitonic sort [11] proved to be too inefficient

considering execution-time. As a move to improve this, Thrust [12] a set of libraries

providing STL functionality in the CUDA framework was made use of. These libraries

make use of an efficient Radix Sort as given by Satish et al. in the paper Designing

Efficient Sorting Algorithms for Manycore GPUs.[13]

Once the sorted, the distances of the conjugates are then calculated. The distance

calculation when linearly implemented, is invariably an operation, where n is

the number of generated conjugates. And given the low-inter communication required in

20

Weighted input

Un-weighted input

Generate solid

sequences

DEVICE

Card-transfer

overheads

Card-transfer

overheads

the calculation, this operation when parallelized produced promising results. The

operation when parallelized makes one thread in a block responsible for the distance

calculation of one sequence-pattern pair. Hence, a total of threads, running in

parallel, are able to calculate the distance measure.

To summarize the work, the following flow diagram shows the control of transfer in the

execution of the EBWT logic:

START createSolidSequences

ColorNodes

Generate conjugates

Sort conjugates

Prepare data to calculate

distances

Display distances between each

pair of sequences and patterns END

21

Chapter 4: Analysis and Results

 INPUT

• Length of weighted sequence :

• Length of weighted pattern :

• Threshold parameter : (Note: Threshold =)

1. Conversion of weighted sequences to solid sequences:
Performed on Host

• In the following discussion, let represent either or .

• and represent the number of positions in the input weighted sequence and

pattern respectively.

Sub-operations and timing

1. Identify Black nodes, based on :

2. Construct Black-node graph:

3. Form solid sequences from above constructed graph:

Resulting data generated:

• Total number of solid sequences, :

• Total number of solid patterns, :

• Width of each solid sequences, :

• Width of each solid pattern, :

A

C

G

T

22

2. Initialize offsets and generate conjugates of each solid sequence

Performed on Device

Sub-operations

1. Generate conjugates of every solid sequence:

Each solid word is assigned one block. Each thread in that block is assigned one

character of that word. Each thread thus is responsible for creating one conjugate.

The resulting conjugates are stored in a contiguous locations of a char[] data

structure.

• Conjugate generation cost by each thread :

• Number of active threads

• Number of active blocks

• Responsible code:

dev_strncpy(conjugate_of_my_concern, pw_of_my_concern +

conjugate_no, pw_len gth[blockIdx.x]-conjugate_no);

dev_strncpy(conjugate_of_my_concern + pw_length[blockIdx.x] -

conjugate_no,p w_of_my_concern, conjugate_no);

• Moreover, efficient utilization of card bandwidth is achieved while writing

elements to the global memory space, due to the contiguous nature of memory

calls.

• The gather operations and string operations, are, however, not efficient.

2. Keep track of every conjugate’s parent solid word :

• Maintain a from[] array to keep in store the parent index.

• Maintained as and when a conjugate is created.

23

3. Lexicographic Sorting of generated conjugates

Performed on Device

Sorting is the performance bottle-neck in our implementation. A Bitonic sort

implemented in CUDA resulted in a degradation of performance as compared to Uni-

processor performance.

For a Bitonic Sort, which makes use of the Odd-Even sorting principle, the results on the

runs were:

Length of solid sequence Time taken to perform Bitonic Sort (in s)

GPU CPU

50 0.235 0.2500

60 0.341 0.3750

70 0.473 0.3280

80 3.226 2.188

90 27.148 25.172

100 171.97 120.468

110 235.184 155.690

120 314.291 199.469

130 411.521 269.570

140 513.339 298.2797

150 639.562 384.219

160 782.565 421.141

170 904.870 512.000

180 1600.894 598.370

24

190 1242.666 678.969

200 1433.8454 729.078

210 1648.092 883.219

220 1882.680 974.359

230 2134.472 1043.281

240 2422.185 1179.797

250 2442.583 1310.688

260 4086.381 1452.141

270 3359.381 1553.157

280 15610.748 6818.651

290 17331.973 8629.375

300 -- --

The data has been processed in the following environment:

• GPU used : NVIDIA Quadro 3700 FX

• CPU used : Intel Pentium 4 uniprocessor

• Compiling environment used: Microsoft Visual Studio 2005, enabled with NVCC,

available through CUDA 3.0 SDK

• Threshold value for weighted sequence, K = ⅕

25

Shortcoming in the implementation of Bitonic Sort

• The implementation of the Odd-Even Sort or Bitonic Sort is divided into 3 stages,

as seen from the perspective of the device. The stages are:

Stage 1:

In the device, each thread is assigned to handle two ptr_d[]* elements. In accessing

these two elements, the threads create an un-coalesced gather operation from the global

memory of the device, thereby greatly decreasing capable memory bandwidth and

increasing the access time by a few hundred clock cycles.

Stage 2:

Once the values of ptr_d[i] and ptr_d[i+1]are obtained by a thread, the characters

pointed to by these values are accessed through a global-memory access. (This is done by

passing these values in __device__ dev_strcmp()* method)

Since this gather operation is more scattered than the previous operation, there exists a

further inefficiency in the bandwidth utilization, thereby costing a few hundred more

clock cycles for the operation.

Stage 3:

Once the characters from the sequences are read and compared, appropriate changes to

their positions' data is calculated. This calculation is reflected onto ptr_d[]by making

a global-write.

Since these writes too are scattered in nature, no attempt to utilize the full-bandwidth is done.

• The above stages highlight a high-degree of scattering while making global

memory calls.

In addition to this, the number of kernel calls generated by the CPU for Bitonic Sort too

is (tot_length
*
). In a typical run, tot_length ≈ 106.

Hence, the CPU overhead of launching these many kernels is also high.

26

An Improvement:

In the implementation of Bitonic Sort, it may be noted, that Stages 1 and 3 are

unavoidable, no matter what our approach to the whole sorting operation is. An

optimization, if any, may be considered for Stage 2 of this process.

Satish et al., in their paper Designing Efficient Sorting Algorithms for Manycore GPUs,

discuss an efficient implementation of the Radix Sort on CUDA. This implementation is

being incorporated on Stage 2 of our sorting process.

The theory discussed in the paper, however, has a limitation while being implemented. Its

strategy to improve performance involves message passing among thread blocks.

However, a clear description of the implementation details is missing. It maybe noted that

CUDA explicitly does not support message passing between blocks of thread.

These shortcomings aside, the approach promises a considerable speed-up as compared to

Bitonic Sort, if implemented. The features contributing to the projected speed-up are:

1. The number of kernel calls needed to sort the entire all_repeat[]* array would be

of the order Ο(max_width*), in contrast to an order Ο(tot_length) required by Bitonic

Sort.

2. The implementation makes use of the fast-caches, local to each thread-block to

perform calculations, as opposed to using the global memory. The access to these caches

is significantly faster than global memory accesses.

This shared memory is not used at all, in the implementation of Bitonic Sort.

* Please refer appendix for a description of the variables

27

Lexicographic Sorting using Thrust Libraries and consequences

Thrust is a library which provides an STL interface to coding in CUDA. Along with a

user-friendly library data structures, it also provides highly-optimized implementation of

standard algorithms, such as sorting and searching.

We attempted to implement our ideas using Thrust. Thrust does not provide any ready-

made implementation of lexicographic sorting. In order to achieve this, an intermediate

class had to be written, the objects of which imitated the list of solid words. The objects

were then passed to the library defined sorting functions, keeping in regard the syntax

and data-structure requirements of these functions. This helped achieve a significant

improvement in our performance. The library sort functions use the ideas discussed in the

paper by Satish et al.

The executions timed against the CPU performance along with the user-defined class are

tabulated below.

Results on implementing Lexicographic Sort using Thrust

Length of solid sequence Time taken to perform Bitonic Sort (in s)

GPU CPU

50 0.016 0.2500

60 0.016 0.3750

70 0.031 0.3280

80 0.046 2.188

90 0.140 25.172

100 0.360 120.468

110 0.422 155.690

120 0.531 199.469

28

130 0.593 269.570

140 0.719 298.2797

150 0.812 384.219

160 0.921 421.141

170 1.079 512.000

180 1.265 598.370

190 1.375 678.969

200 1.531 729.078

210 1.688 883.219

220 1.906 974.359

230 2.047 1043.281

240 2.250 1179.797

250 2.422 1310.688

260 2.703 1452.141

Results on implementing Lexicographic Sort using Thrust with improvised CPU

code

(in seconds)

Length of

sequence

GPU CPU

Sort Distance Total Sort Distance Total

50 0.016 0.016 0.594 0.031 0.470 0.109

60 0.016 0.015 0.625 0.031 0.032 0.063

29

70 0.031 0.016 0.735 0.031 0.470 0.078

80 0.046 0.078 1.562 0.062 0.359 0.484

90 0.140 0.772 4.016 0.172 2.779 3.062

100 0.360 5.50 13.07 0.500 23.844 24.515

110 0.422 6.00 14.82 0.500 25.734 26.437

120 0.531 6.563 15.922 0.593 28.39 29.265

130 0.593 7.093 16.656 0.657 30.50 31.422

140 0.719 7.625 18.203 0.703 33.094 34.094

150 0.812 8.188 19.36 0.875 35.437 36.625

160 0.921 8.797 20.719 0.860 37.89 39.14

170 1.079 9.219 22.0 0.953 40.359 41.734

180 1.265 9.783 23.485 1.046 42.078 43.531

190 1.375 10.344 25.672 1.187 44.984 46.625

200 1.531 2.953 26.50 1.297 47.282 49.078

210 1.688 11.453 28.00 1.39 49.641 51.953

220 1.906 11.979 29.359 1.453 51.984 54.593

230 2.047 12.578 30.937 1.516 53.843 56.093

240 2.250 13.094 32.672 1.65 57.172 59.516

250 2.422 13.61 33.625 1.75 59.532 63.0

260 2.703 14.141 35.203 1.843 61.563 64.469

30

It may be observed in the previous results that GPU outperforms the CPU through a 5X

speed up. However, the total time, which is not the sum of the times taken to sort the

conjugates and calculate the distances between them, is reduced from the 5X mark due to

the card’s overhead of moving data to and from the RAM, hence, bringing down the

speed up to 2X.

The implementation now brings in to focus the constraints posed by the ranges of the

data-types used in the implementation. Given good sorting speeds, there is an upper limit

to the amount of data which can be crunched by the current implementation. An analysis

of this follows –

1. The maximum file size possible to be tested in current implementation

• In the course of the implementation, we define tot_length to keep track of the

sum of all string lengths of the weighted sequences generated.

tot_length is assigned type unsigned int.

On a 64-bit machine, this translates to maximum capacity of the variable to be: 2
4x8=32

since unsigned int is assigned 4 bytes.

• Let n be the string length of the Weighted input sequence. Then, the number of

strings generated, in the worst case, are Ο(4
n

)

In this case, the sum of all string lengths generated would be Ο(n.4
n
)

• For correct operability, n.4
n
 ≤ 2

32

Solving for n, we get n ≈ 14.5

As a result, we immediately get an upper bound to the size file usable for comparison of

sequences.

Assuming each character consumes one byte, a typical input file of the pattern may not

exceed 500 bytes (given, there exists a fixed format for the input files)

Moreover, there also exists a bound on the memory spaces Malloc() can allocate, the

number of elements the STL data type vector<> can contain and the total number of

blocks a kernel can launch.

31

Conclusion and Future Work

The results have shown that an efficient implementation on CUDA may result in a

significant increase in performance. This increase encourages us to explore new

applications wherein the functionalities of EBWT can be used to solve real-life problems.

As food for thought, we would like to see how EBWT would perform if applied to the

problem of matching images. Image identification and matching is a problem with

massive real-life application. If EBWT succeeds to imitate existing algorithms in

recognizing and matching two images, we shall have found a plausible alternative in

approaching the problem. Moreover, its impact onto application domains such as

robotics, reverse-image searching etc. shall also be interesting to study.

Moreover, if the functionality of EBWT is able to translate to the domain of matching

images, it shall help analyze many other open-ended problems such as matching of audio-

samples, matching of motion pictures etc. These problems, if solved efficiently, promises

tremendous impact on everyday applications.

32

Appendix

1. Table of some key variables used in the implementation

Name of variable

Data Type

Size/Bound

Description

max_width

unsigned int

< 500
It contains the maximum

length a solid sequence

may have

tot_length

unsigned int

< sizeof(int)
It contains the sum of the

string lengths of all solid

sequences generated

all_repeats

char*

max_width*tot_length
It contains all the

generated conjugates/

padded conjugates

needed for the EBWT,

placed contiguously in the

array.

ptr_d

char*

tot_length
It contains the address of

the beginning of every

solid sequence stored in

all_repeats[]

33

2. Class definition to imitate a string on the device

#include <thrust/device_ptr.h>

#include <thrust/host_vector.h>

#include <thrust/device_vector.h>

#include <thrust/sort.h>

#include <thrust/copy.h>

#define POOL_SZ (100*1024*1024)

using namespace std;

class device_string

{

public:

 int cstr_len;

 char* raw;

 thrust::device_ptr<char> cstr;

 static char* pool_raw;

 static thrust::device_ptr<char> pool_cstr;

 static thrust::device_ptr<char> pool_top;

 // Sets the variables up the first time its used.

 __host__ static void init()

 {

 static bool v = true;

 if(v)

 {

 v = false;

 pool_cstr = thrust::device_malloc(POOL_SZ);

 pool_raw = (char*)raw_pointer_cast(pool_cstr

);

 pool_top = pool_cstr;

 }

 }

 // Destructor for device variables used.

 __host__ static void fin()

 {

 init();

 thrust::device_free(pool_cstr);

 }

 // Parametrized constructor to copy one device_string to

another.

 __host__ device_string(const device_string& s)

34

 {

 cstr_len = s.cstr_len;

 raw = s.raw;

 cstr = s.cstr;

 }

 // Parametrized constructor to copy a std::string to

device_string type

 __host__ device_string(const std::string& s)

 {

 cstr_len = s.length();

 init();

 cstr = pool_top;

 pool_top += cstr_len+1;

 raw = (char *) raw_pointer_cast(cstr);

 cudaMemcpy(raw, s.c_str(), cstr_len+1,

cudaMemcpyHostToDevice);

 }

 // Default constructor.

 __host__ __device__ device_string()

 {

 cstr_len = -1;

 raw = NULL;

 }

 // Conversion operator to copy device_string type to

std::string

 __host__ operator std::string (void)

 {

 thrust::host_vector<char> temp(cstr_len);

 thrust::copy(cstr, cstr + cstr_len, temp.begin());

 std::string result(temp.begin(), temp.end());

 return result;

 }

};

char* device_string::pool_raw;

thrust::device_ptr<char> device_string::pool_cstr;

thrust::device_ptr<char> device_string::pool_top;

// User-defined comparison operator

bool __device__ operator < (device_string lhs, device_string

rhs)

{

 char* l = lhs.raw;

 char* r = rhs.raw;

35

 for(; *l && *r && *l==*r;)

 {

 ++l;

 ++r;

 }

 return *l < *r;

}

36

References

1 NVIDIA Corporation, NVIDIA CUDA Programming Guide, Nov. 2007. Version

1.1.

2 NVIDIA Corporation, NVIDIA OpenCL Best Practices Guide Version 1.0, July

10, 2009.

3 M. Burrows and D.J. Wheeler, A Block-sorting Lossless Data Compression

Algorithm, SRC Research Report, DIGITAL Systems Research Center, Palo Alto, May

10, 1994.

4 S. Mantaci, A. Restivo, G. Rosone, M. Sciortino, An extension of the Burrows–

Wheeler Transform, Theoretical Computer Science 387, Pp. 298–312, 2007.

5 Sabrina Mantaci, Antonio Restivo, G. Rosone, and Marinella Sciortino, An

Extension of the Burrows Wheeler Transform and Applications to Sequence Comparison

and Data Compression, Lecture Notes in Computer Science, Springer 3537/2005, Pp.

178-189, May 2005.

6 Jamie Simpson, Simon J. Puglisi, Words with simple Burrows-Wheeler

Transforms, The Electronic Journal of Combinatorics, Volume 15(1), 2008, #R83, 2008.

7 Matt Powell, Compressed-Domain Pattern Matching with the Burrows-Wheeler

Transform, Honours Project Report, Canterbury Corpus, New Zealand, 2001.

8 Gregory Diamos, Sudnya Padalikar, Exploring The Latency and Bandwidth

Tolerance of CUDA Applications, NFinTes Tech Report, December 2009.

9 Lung-Sheng Chien, Hand-Tuned SGEMM on GT200 GPU, Technical Report,

Department of Mathematics, Tsing Hua university, R.O.C. (Taiwan), 2009.

10 Costas S. Iliopoulos, Christos Makris, Yannis Panagis, Katerina Perdikuri,

Evangelos Theodoridis, The Weighted Suffix Tree: An Efficient Data Structure for

Handling Molecular Weighted Sequences and its Applications, Fundamenta Informaticae,

71(2-3), Pp. 259-277, 2006.

11 T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to

Algorithms, MIT Press, Second edition, Sept. 2001.

37

12 Jared Hoberock and Nathan Bell, Thrust: A Parallel Template Library, version 1.2,

http://www.meganewtons.com/, 2009.

13 Nadathur Satish, Mark Harris, Michael Garland, Designing Efficient Sorting

Algorithms for Manycore GPUs, Proceedings of the 23rd IEEE International Parallel and

Distributed Processing Symposium, May 2009.

